IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014113.html
   My bibliography  Save this article

An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads

Author

Listed:
  • Zhang, Tingsheng
  • Kong, Lingji
  • Zhu, Zhongyin
  • Wu, Xiaoping
  • Li, Hai
  • Zhang, Zutao
  • Yan, Jinyue

Abstract

Vibration energy harvesting technology is characterized by wide distribution, is pollution-free and independent of weather and climate, and is suitable for powering low-power sensors to ensure efficient and safe operation in freight railroads. This paper proposed an electromagnetic vibration energy harvester based on a series coupling input mechanism for the self-powered sensors in freight railroads. The design utilizes only one rack for vibration energy input to minimize the moment acting on the vibration source during the working process. Two pinions meshed with the rack convert the up and down vibrations into a two-way rotation. The one-way bearings and another pair of gears convert the opposite rotations of two parallel shafts into one-way rotation of the generator shaft, generating electricity. Supercapacitors and rectifier voltage regulator modules are utilized to store electrical energy efficiently. A peak power of 10.219 W and maximum mechanical efficiency of 64.31% is obtained in the experiment equipped with a flywheel under the 8 mm-4 Hz sinusoidal vibration excitation. The experimental results showed that the flywheel can enable the proposed harvester to achieve better power generation performance when the amplitude and frequency are relatively high.

Suggested Citation

  • Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014113
    DOI: 10.1016/j.apenergy.2023.122047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gunn, B. & Alevras, P. & Flint, J.A. & Fu, H. & Rothberg, S.J. & Theodossiades, S., 2021. "A self-tuned rotational vibration energy harvester for self-powered wireless sensing in powertrains," Applied Energy, Elsevier, vol. 302(C).
    2. Yang, Fan & Gao, Mingyuan & Wang, Ping & Zuo, Jianyong & Dai, Jun & Cong, Jianli, 2021. "Efficient piezoelectric harvester for random broadband vibration of rail," Energy, Elsevier, vol. 218(C).
    3. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    4. Yang, Yiqing & Pian, Yawei & Liu, Qiang, 2019. "Design of energy harvester using rotating motion rectifier and its application on bicycle," Energy, Elsevier, vol. 179(C), pages 222-231.
    5. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    6. Yang, Yiqing & Chen, Peihao & Liu, Qiang, 2021. "A wave energy harvester based on coaxial mechanical motion rectifier and variable inertia flywheel," Applied Energy, Elsevier, vol. 302(C).
    7. Hudson, Steven M. & Taylor, John T. & Bowen, Christopher R., 2022. "Energy harvesting of cathodic protection currents in subsea and marine structures for wireless sensor power and communication," Applied Energy, Elsevier, vol. 316(C).
    8. Moradi-Dastjerdi, Rasool & Behdinan, Kamran, 2021. "Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate," Applied Energy, Elsevier, vol. 293(C).
    9. Irfan, Muhammad & Elavarasan, Rajvikram Madurai & Ahmad, Munir & Mohsin, Muhammad & Dagar, Vishal & Hao, Yu, 2022. "Prioritizing and overcoming biomass energy barriers: Application of AHP and G-TOPSIS approaches," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Li, Xiang & Gao, Qi & Cao, Yuying & Yang, Yanfei & Liu, Shiming & Wang, Zhong Lin & Cheng, Tinghai, 2022. "Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation," Applied Energy, Elsevier, vol. 307(C).
    11. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    12. Pan, Yu & Lin, Teng & Qian, Feng & Liu, Cheng & Yu, Jie & Zuo, Jianyong & Zuo, Lei, 2019. "Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation," Applied Energy, Elsevier, vol. 247(C), pages 309-321.
    13. Salman, Waleed & Qi, Lingfei & Zhu, Xin & Pan, Hongye & Zhang, Xingtian & Bano, Shehar & Zhang, Zutao & Yuan, Yanping, 2018. "A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles," Energy, Elsevier, vol. 159(C), pages 361-372.
    14. Lin, Teng & Pan, Yu & Chen, Shikui & Zuo, Lei, 2018. "Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting," Applied Energy, Elsevier, vol. 213(C), pages 219-226.
    15. Cheng, Peng & Liu, Wenquan & Ma, Jing & Zhang, Libo & Jia, Limin, 2022. "Solar-powered rail transportation in China: Potential, scenario, and case," Energy, Elsevier, vol. 245(C).
    16. Harms, Julius & Hollm, Marten & Dostal, Leo & Kern, Thorsten A. & Seifried, Robert, 2022. "Design and optimization of a wave energy converter for drifting sensor platforms in realistic ocean waves," Applied Energy, Elsevier, vol. 321(C).
    17. Karayel, G. Kubilay & Javani, Nader & Dincer, Ibrahim, 2022. "Effective use of geothermal energy for hydrogen production: A comprehensive application," Energy, Elsevier, vol. 249(C).
    18. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    19. Gholikhani, Mohammadreza & Nasouri, Reza & Tahami, Seyed Amid & Legette, Sarah & Dessouky, Samer & Montoya, Arturo, 2019. "Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump," Applied Energy, Elsevier, vol. 250(C), pages 503-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Maciejewski & Sebastian Pecolt & Andrzej Błażejewski & Bartosz Jereczek & Tomasz Krzyzynski, 2024. "Experimental Study of the Energy Regenerated by a Horizontal Seat Suspension System under Random Vibration," Energies, MDPI, vol. 17(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    3. Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
    4. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    5. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    6. Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
    7. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    8. Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
    9. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    10. Yang, Yiqing & Pian, Yawei & Liu, Qiang, 2019. "Design of energy harvester using rotating motion rectifier and its application on bicycle," Energy, Elsevier, vol. 179(C), pages 222-231.
    11. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    12. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    13. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    14. Li, Shiying & Xu, Jun & Gao, Haonan & Tao, Tao & Mei, Xuesong, 2020. "Safety probability based multi-objective optimization of energy-harvesting suspension system," Energy, Elsevier, vol. 209(C).
    15. Sun, Yuhua & Wang, Ping & Lu, Jun & Xu, Jingmang & Wang, Peigen & Xie, Shouyong & Li, Yunwu & Dai, Jun & Wang, Bowen & Gao, Mingyuan, 2021. "Rail corrugation inspection by a self-contained triple-repellent electromagnetic energy harvesting system," Applied Energy, Elsevier, vol. 286(C).
    16. Zhang, Duo & Tang, Yin-Ying & Peng, Qi-Yuan, 2023. "A novel approach for decreasing driving energy consumption during coasting and cruise for the railway vehicle," Energy, Elsevier, vol. 263(PA).
    17. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    18. Fang, Shitong & Chen, Keyu & Lai, Zhihui & Zhou, Shengxi & Liao, Wei-Hsin, 2023. "Analysis and experiment of auxetic centrifugal softening impact energy harvesting from ultra-low-frequency rotational excitations," Applied Energy, Elsevier, vol. 331(C).
    19. Bartosz Drzymała & Jakub Gęca & Marcin Bocheński, 2023. "Kinetic Vibration Energy Harvester Based on Electromechanical Converter with Power Electronics Active Rectifier," Energies, MDPI, vol. 16(20), pages 1-12, October.
    20. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.