IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p280-d1564036.html
   My bibliography  Save this article

Evaluation and Reduction of Energy Consumption of Railway Train Movement on a Straight Track Section with Reduced Freight Wagon Mass

Author

Listed:
  • Maryna Bulakh

    (Faculty of Mechanics and Technology, Rzeszow University of Technology, 4 Kwiatkowskiego Street, 37-450 Stalowa Wola, Poland)

Abstract

This paper presents an evaluation and reduction of energy consumption during railway train movement on a straight track section with reduced freight wagon mass. A theoretical model was developed to simulate energy consumption based on input parameters, including train speed, track gradient, section length, travel time, and train mass. The results indicate that energy consumption increases by 18.9% as speed rises to 90 km/h and as gradients increase to 2.0‰, while energy consumption decreases by 14.5% on a descending gradient of 1.5‰, which corresponds to the expected dynamics of railway trains. These results are supported by experiments showing that the MAPE error does not exceed 1.9%, which can confirm the accuracy of the developed model. A comprehensive analysis of the potential reduction in energy consumption with reduced freight wagon mass was also conducted. Using a freight wagon design with a reduced mass of 2.3% allows for a reduction in energy consumption by 8–89 kW·h, depending on the length of the section and the speed of movement.

Suggested Citation

  • Maryna Bulakh, 2025. "Evaluation and Reduction of Energy Consumption of Railway Train Movement on a Straight Track Section with Reduced Freight Wagon Mass," Energies, MDPI, vol. 18(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:280-:d:1564036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Pengling & Goverde, Rob M.P., 2019. "Multi-train trajectory optimization for energy-efficient timetabling," European Journal of Operational Research, Elsevier, vol. 272(2), pages 621-635.
    2. Willem Haanstra & Alberto Martinetti & Jan Braaksma & Leo van Dongen, 2020. "Design of a Framework for Integrating Environmentally Sustainable Design Principles and Requirements in Train Modernization Projects," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    3. Andrzej Kochan & Wiktor B. Daszczuk & Waldemar Grabski & Juliusz Karolak, 2023. "Formal Verification of the European Train Control System (ETCS) for Better Energy Efficiency Using a Timed and Asynchronous Model," Energies, MDPI, vol. 16(8), pages 1-22, April.
    4. Xiaowen Wang & Zhuang Xiao & Mo Chen & Pengfei Sun & Qingyuan Wang & Xiaoyun Feng, 2020. "Energy-Efficient Speed Profile Optimization and Sliding Mode Speed Tracking for Metros," Energies, MDPI, vol. 13(22), pages 1-29, November.
    5. Lai, Qingying & Liu, Jun & Haghani, Ali & Meng, Lingyun & Wang, Yihui, 2020. "Energy-efficient speed profile optimization for medium-speed maglev trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Zdenko Kljaić & Danijel Pavković & Mihael Cipek & Maja Trstenjak & Tomislav Josip Mlinarić & Mladen Nikšić, 2023. "An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport," Future Internet, MDPI, vol. 15(11), pages 1-44, October.
    7. Sergey Goolak & Liliia Kondratieva & Ievgen Riabov & Vaidas Lukoševičius & Artūras Keršys & Rolandas Makaras, 2023. "Research and Optimization of Hybrid On-Board Energy Storage System of an Electric Locomotive for Quarry Rail Transport," Energies, MDPI, vol. 16(7), pages 1-19, April.
    8. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    9. Shuai Su & Tao Tang & Yihui Wang, 2016. "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, MDPI, vol. 9(2), pages 1-19, February.
    10. He, Deqiang & Yang, Yanjie & Chen, Yanjun & Deng, Jianxin & Shan, Sheng & Liu, Jianren & Li, Xianwang, 2020. "An integrated optimization model of metro energy consumption based on regenerative energy and passenger transfer," Applied Energy, Elsevier, vol. 264(C).
    11. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    12. Aredah, Ahmed & Fadhloun, Karim & Rakha, Hesham A., 2024. "Energy optimization in freight train operations: Algorithmic development and testing," Applied Energy, Elsevier, vol. 364(C).
    13. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    14. Xing, Zongyi & Zhang, Zhenyu & Guo, Jian & Qin, Yong & Jia, Limin, 2023. "Rail train operation energy-saving optimization based on improved brute-force search," Applied Energy, Elsevier, vol. 330(PA).
    15. Agostinho Rocha & Armando Araújo & Adriano Carvalho & João Sepulveda, 2018. "A New Approach for Real Time Train Energy Efficiency Optimization," Energies, MDPI, vol. 11(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    2. Maryna Bulakh & Leszek Klich & Oleksandra Baranovska & Anastasiia Baida & Sergiy Myamlin, 2023. "Reducing Traction Energy Consumption with a Decrease in the Weight of an All-Metal Gondola Car," Energies, MDPI, vol. 16(18), pages 1-12, September.
    3. Huang, Yu & Zhou, Wenliang & Qin, Jin & Deng, Lianbo, 2023. "Optimization of energy-efficiency train schedule considering passenger demand and rolling stock circulation plan of subway line," Energy, Elsevier, vol. 275(C).
    4. Zhang, Chi & Zeng, Guohong & Wu, Jian & Wei, Shaoyuan & Zhang, Weige & Sun, Bingxiang, 2023. "Integrated optimization of driving strategy and energy management for hybrid diesel multiple units," Energy, Elsevier, vol. 281(C).
    5. Chen, Shuang & Hu, Minghui & Lei, Yanlei & Kong, Linghao, 2023. "Novel hybrid power system and energy management strategy for locomotives," Applied Energy, Elsevier, vol. 348(C).
    6. Weiya Chen & Jiaqi Lu & Hengpeng Zhang & Ziyue Yuan, 2023. "Pareto Optimization of Energy-Saving Timetables Considering the Non-Parallel Operation of Multiple Trains on a Metro Line," Mathematics, MDPI, vol. 11(21), pages 1-19, October.
    7. Sahil Bhagat & Jacopo Bongiorno & Andrea Mariscotti, 2023. "Influence of Infrastructure and Operating Conditions on Energy Performance of DC Transit Systems," Energies, MDPI, vol. 16(10), pages 1-26, May.
    8. Liu, Siwei & Lu, Chao & He, Guannan, 2024. "Distributed electric bicycle batteries for subway station energy management as a virtual power plant," Applied Energy, Elsevier, vol. 370(C).
    9. Zdenko Kljaić & Danijel Pavković & Mihael Cipek & Maja Trstenjak & Tomislav Josip Mlinarić & Mladen Nikšić, 2023. "An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport," Future Internet, MDPI, vol. 15(11), pages 1-44, October.
    10. Zhou, Fang-Ru & Zhou, Kai & Zhang, Duo & Peng, Qi-Yuan, 2024. "Optimization of the cruising speed for high-speed trains to reduce energy consumed by motion resistances," Applied Energy, Elsevier, vol. 374(C).
    11. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
    12. Zhong, Linhuan & Xu, Guangming & Liu, Wei, 2024. "Energy-efficient and demand-driven train timetable optimization with a flexible train composition mode," Energy, Elsevier, vol. 305(C).
    13. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    14. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    15. Antonio Gabaldón & Ana García-Garre & María Carmen Ruiz-Abellón & Antonio Guillamón & Roque Molina & Juan Medina, 2023. "Management of Railway Power System Peaks with Demand-Side Resources: An Application to Periodic Timetables," Sustainability, MDPI, vol. 15(3), pages 1-27, February.
    16. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    17. Jiang Liu & Tian-tian Li & Bai-gen Cai & Jiao Zhang, 2020. "Boundary Identification for Traction Energy Conservation Capability of Urban Rail Timetables: A Case Study of the Beijing Batong Line," Energies, MDPI, vol. 13(8), pages 1-25, April.
    18. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    19. Ziyu Wu & Chunhai Gao & Tao Tang, 2021. "An Optimal Train Speed Profile Planning Method for Induction Motor Traction System," Energies, MDPI, vol. 14(16), pages 1-14, August.
    20. Oleg Bazaluk & Valerii Havrysh & Mykhailo Fedorchuk & Vitalii Nitsenko, 2021. "Energy Assessment of Sorghum Cultivation in Southern Ukraine," Agriculture, MDPI, vol. 11(8), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:280-:d:1564036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.