Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.tre.2018.12.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Khan, M. Atikur Rahman & Poskitt, D.S., 2017. "Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application," International Journal of Forecasting, Elsevier, vol. 33(1), pages 199-213.
- Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011.
"Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.
- Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922.
- Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
- Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
- Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Shuyu Dai & Dongxiao Niu & Yan Li, 2018. "Daily Peak Load Forecasting Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Support Vector Machine Optimized by Modified Grey Wolf Optimization Algorithm," Energies, MDPI, vol. 11(1), pages 1-25, January.
- Ruiz-Aguilar, J.J. & Turias, I.J. & Jiménez-Come, M.J., 2014. "Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 1-13.
- Goodrich, Robert L., 2000. "The Forecast Pro methodology," International Journal of Forecasting, Elsevier, vol. 16(4), pages 533-535.
- Tsui, Wai Hong Kan & Ozer Balli, Hatice & Gilbey, Andrew & Gow, Hamish, 2014. "Forecasting of Hong Kong airport's passenger throughput," Tourism Management, Elsevier, vol. 42(C), pages 62-76.
- He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Tarsitano, Agostino & Amerise, Ilaria L., 2017. "Short-term load forecasting using a two-stage sarimax model," Energy, Elsevier, vol. 133(C), pages 108-114.
- Yukun Bao & Tao Xiong & Zhongyi Hu, 2012. "Forecasting Air Passenger Traffic by Support Vector Machines with Ensemble Empirical Mode Decomposition and Slope-Based Method," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-12, November.
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
- de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
- Wojciech W. Charemza & Derek F. Deadman, 1997. "New Directions In Econometric Practice, Second Edition," Books, Edward Elgar Publishing, number 1139.
- Gelhausen, Marc C. & Berster, Peter & Wilken, Dieter, 2018. "A new direct demand model of long-term forecasting air passengers and air transport movements at German airports," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 140-152.
- Alekseev, K.P.G. & Seixas, J.M., 2009. "A multivariate neural forecasting modeling for air transport – Preprocessed by decomposition: A Brazilian application," Journal of Air Transport Management, Elsevier, vol. 15(5), pages 212-216.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Suh, Daniel Y. & Ryerson, Megan S., 2019. "Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 400-416.
- Xin Liu & Xuefeng Sang & Jiaxuan Chang & Yang Zheng, 2021. "Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4021-4041, September.
- Tirtha, Sudipta Dey & Bhowmik, Tanmoy & Eluru, Naveen, 2024. "Accommodating spatio-temporal dependency in airline demand modeling," Journal of Air Transport Management, Elsevier, vol. 116(C).
- Emami Javanmard, Majid & Tang, Yili & Martínez-Hernández, J. Adrián, 2024. "Forecasting air transportation demand and its impacts on energy consumption and emission," Applied Energy, Elsevier, vol. 364(C).
- Gudmundsson, S.V. & Cattaneo, M. & Redondi, R., 2021. "Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19," Journal of Air Transport Management, Elsevier, vol. 91(C).
- Banaś, Jan & Utnik-Banaś, Katarzyna, 2021. "Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting," Forest Policy and Economics, Elsevier, vol. 131(C).
- Nguyen, Quang Hai, 2024. "Modeling the volatility of international air freight: A case study of Singapore using the SARIMAX-EGARCH model," Journal of Air Transport Management, Elsevier, vol. 117(C).
- Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
- Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.
- Agnieszka Barczak & Izabela Dembińska & Dorota Rozmus & Katarzyna Szopik-Depczyńska, 2022. "The Impact of COVID-19 Pandemic on Air Transport Passenger Markets-Implications for Selected EU Airports Based on Time Series Models Analysis," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
- Emami Javanmard, M. & Tang, Y. & Wang, Z. & Tontiwachwuthikul, P., 2023. "Forecast energy demand, CO2 emissions and energy resource impacts for the transportation sector," Applied Energy, Elsevier, vol. 338(C).
- Wang, Jianxin & Lim, Ming K. & Zhan, Yuanzhu & Wang, XiaoFeng, 2020. "An intelligent logistics service system for enhancing dispatching operations in an IoT environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
- Luo, Suyuan & Lin, Xudong & Zheng, Zunxin, 2019. "A novel CNN-DDPG based AI-trader: Performance and roles in business operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 68-79.
- Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
- Fanyu Meng & Wenwu Gong & Jun Liang & Xian Li & Yiping Zeng & Lili Yang, 2021. "Impact of different control policies for COVID-19 outbreak on the air transportation industry: A comparison between China, the U.S. and Singapore," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
- Chou, Jui-Sheng & Truong, Dinh-Nhat & Kuo, Ching-Chiun, 2021. "Imaging time-series with features to enable visual recognition of regional energy consumption by bio-inspired optimization of deep learning," Energy, Elsevier, vol. 224(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Ghouse, Ghulam & Khan, Saud Ahmed & Habeeb, Kashif, 2019. "Information Transmission Among Equity Markets: A Comparison Between ARDL and GARCH Model," MPRA Paper 97925, University Library of Munich, Germany.
- Chen, Jieh-Haur & Wei, Hsi-Hsien & Chen, Chih-Lin & Wei, Hsin-Yi & Chen, Yi-Ping & Ye, Zhongnan, 2020. "A practical approach to determining critical macroeconomic factors in air-traffic volume based on K-means clustering and decision-tree classification," Journal of Air Transport Management, Elsevier, vol. 82(C).
- Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
- Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
- Balli, Hatice Ozer & Tsui, Wai Hong Kan & Balli, Faruk, 2019. "Modelling the volatility of international visitor arrivals to New Zealand," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 204-214.
- Alberto De Santis & Umberto Dellepiane & Stefano Lucidi & Stefania Renzi, 2014. "Optimal Step-wise Parameter Optimization of a FOREX Trading Strategy," DIAG Technical Reports 2014-06, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
- Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
- Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
- Nguyen, Quang Hai, 2024. "Modeling the volatility of international air freight: A case study of Singapore using the SARIMAX-EGARCH model," Journal of Air Transport Management, Elsevier, vol. 117(C).
- Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series,"
Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Post-Print hal-04312314, HAL.
- Pal, Shanoli Samui & Kar, Samarjit, 2019. "Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 18-30.
- Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
- Xuedi Li & Jie Ma & Zhu Chen & Haitao Zheng, 2018. "Linkage Analysis among China’s Seven Emissions Trading Scheme Pilots," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
- Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
- Yee-Fan Tan & Lee-Yeng Ong & Meng-Chew Leow & Yee-Xian Goh, 2021. "Exploring Time-Series Forecasting Models for Dynamic Pricing in Digital Signage Advertising," Future Internet, MDPI, vol. 13(10), pages 1-24, September.
- Fanyu Meng & Wenwu Gong & Jun Liang & Xian Li & Yiping Zeng & Lili Yang, 2021. "Impact of different control policies for COVID-19 outbreak on the air transportation industry: A comparison between China, the U.S. and Singapore," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
- Hu, Yi-Chung, 2023. "Air passenger flow forecasting using nonadditive forecast combination with grey prediction," Journal of Air Transport Management, Elsevier, vol. 112(C).
- Wai Hong Kan Tsui & Faruk Balli, 2017. "International arrivals forecasting for Australian airports and the impact of tourism marketing expenditure," Tourism Economics, , vol. 23(2), pages 403-428, March.
More about this item
Keywords
Aviation industry; SARIMA; SVR; Gaussian white noise; Time series forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:122:y:2019:i:c:p:169-180. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.