IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p903-d81920.html
   My bibliography  Save this article

Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles

Author

Listed:
  • Cong Zhang

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Haitao Min

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yuanbin Yu

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Dai Wang

    (Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA)

  • Justin Luke

    (Engineering Science, University of California, Berkeley, CA 94720, USA)

  • Daniel Opila

    (Electrical and Computer Engineering Department, United States Naval Academy, Annapolis, MD 21402, USA)

  • Samveg Saxena

    (Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA)

Abstract

Range anxiety and battery cycle life are two major factors which restrict the development of electric vehicles. Battery degradation can be reduced by adding supercapacitors to create a Hybrid Energy Storage System. This paper proposes a systematic approach to configure the hybrid energy storage system and quantifies the battery degradation for electric vehicles when using supercapacitors. A continuous power-energy function is proposed to establish supercapacitor size based on national household travel survey statistics. By analyzing continuous driving action in standard driving cycles and special driving phases (start up and acceleration), the supercapacitor size is calculated to provide a compromise between the capacitor size and battery degradation. Estimating the battery degradation after 10 years, the battery capacity loss value decreases 17.55% and 21.6%, respectively, under the urban dynamometer driving schedule and the US06. Furthermore, the battery lifespan of the continuous power-energy configured system is prolonged 28.62% and 31.39%, respectively, compared with the battery alone system.

Suggested Citation

  • Cong Zhang & Haitao Min & Yuanbin Yu & Dai Wang & Justin Luke & Daniel Opila & Samveg Saxena, 2016. "Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles," Energies, MDPI, vol. 9(11), pages 1-23, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:903-:d:81920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Ziyou & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Lu, Languang & Ouyang, Minggao & Hofmann, Heath, 2014. "Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 135(C), pages 212-224.
    2. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    3. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    4. Burke, Andrew, 2000. "Ultracapacitors: Why, How, and Where is the Technology," Institute of Transportation Studies, Working Paper Series qt9n905017, Institute of Transportation Studies, UC Davis.
    5. Qinglai Guo & Yao Wang & Hongbin Sun & Zhengshuo Li & Shujun Xin & Boming Zhang, 2012. "Factor Analysis of the Aggregated Electric Vehicle Load Based on Data Mining," Energies, MDPI, vol. 5(6), pages 1-18, June.
    6. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.
    7. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    8. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    9. Noshin Omar & Mohamed Daowd & Omar Hegazy & Peter Van den Bossche & Thierry Coosemans & Joeri Van Mierlo, 2012. "Electrical Double-Layer Capacitors in Hybrid Topologies —Assessment and Evaluation of Their Performance," Energies, MDPI, vol. 5(11), pages 1-36, November.
    10. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    11. Lunz, Benedikt & Yan, Zexiong & Gerschler, Jochen Bernhard & Sauer, Dirk Uwe, 2012. "Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs," Energy Policy, Elsevier, vol. 46(C), pages 511-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Tao & Lot, Roberto & Wills, Richard G.A. & Yan, Xingda, 2020. "Sizing a battery-supercapacitor energy storage system with battery degradation consideration for high-performance electric vehicles," Energy, Elsevier, vol. 208(C).
    2. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    3. Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2020. "A Refined Loss Evaluation of a Three-Switch Double Input DC-DC Converter for Hybrid Vehicle Applications," Energies, MDPI, vol. 13(1), pages 1-13, January.
    4. Haitao Min & Changlu Lai & Yuanbin Yu & Tao Zhu & Cong Zhang, 2017. "Comparison Study of Two Semi-Active Hybrid Energy Storage Systems for Hybrid Electric Vehicle Applications and Their Experimental Validation," Energies, MDPI, vol. 10(3), pages 1-20, February.
    5. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Zhang & Dai Wang & Bin Wang & Fan Tong, 2020. "Battery Degradation Minimization-Oriented Hybrid Energy Storage System for Electric Vehicles," Energies, MDPI, vol. 13(1), pages 1-21, January.
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    5. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    6. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    7. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    8. Yunna Wu & Meng Yang & Haobo Zhang & Kaifeng Chen & Yang Wang, 2016. "Optimal Site Selection of Electric Vehicle Charging Stations Based on a Cloud Model and the PROMETHEE Method," Energies, MDPI, vol. 9(3), pages 1-20, March.
    9. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    10. Muhammed Alhanouti & Frank Gauterin, 2024. "A Generic Model for Accurate Energy Estimation of Electric Vehicles," Energies, MDPI, vol. 17(2), pages 1-21, January.
    11. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    12. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    13. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    14. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    15. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    17. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    18. Tejas-Dilipsing Patil & Emmanuel Vinot & Simone Ehrenberger & Rochdi Trigui & Eduardo Redondo-Iglesias, 2023. "Sensitivity Analysis of Battery Aging for Model-Based PHEV Use Scenarios," Energies, MDPI, vol. 16(4), pages 1-17, February.
    19. Stefan Englberger & Holger Hesse & Daniel Kucevic & Andreas Jossen, 2019. "A Techno-Economic Analysis of Vehicle-to-Building: Battery Degradation and Efficiency Analysis in the Context of Coordinated Electric Vehicle Charging," Energies, MDPI, vol. 12(5), pages 1-17, March.
    20. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:903-:d:81920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.