IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp710-719.html
   My bibliography  Save this article

Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing

Author

Listed:
  • Wang, Hewu
  • Zhang, Xiaobin
  • Ouyang, Minggao

Abstract

This study assesses the energy reduction associated with Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs) compared to conventional vehicles (CVs) for real-world driving conditions in a specific geographic region (Beijing, China). To understand the driving patterns in Beijing, a passenger car travel survey has been conducted since 2012, including over 1000 vehicles. The initial results from driving range distribution have been calculated. In this study, first, a Utility Factor and the typical driving cycles based on 2000days’ worth of Global Position System (GPS) data are analyzed. Next, the real-world energy consumption of CVs, HEVs, PHEVs and BEVs are simulated. Finally, the fuel consumption of vehicles under different driving patterns is compared to provide data on the optimal electric vehicles and reliable test cycles for Beijing. We find that electric vehicles in Beijing, including HEVs, PHEVs and BEVs, yield more fuel reduction benefits than in the U.S. because of the severe driving conditions and short driving ranges. For PHEVs in Beijing, smaller batteries, corresponding to a 30–50km Charging Depleting (CD) range, are preferred to meet the demands of most drivers and add less extra cost to the vehicle. We also confirm that the Chinese current suggested label values based on NEDC cycle underestimate the fuel consumption of vehicles and fuel reduction benefits of electric vehicles in Beijing. This study addresses the importance of developing and using the real-world driving cycles in designing and evaluating electric vehicles.

Suggested Citation

  • Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:710-719
    DOI: 10.1016/j.apenergy.2015.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915006881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huiming Gong & Michael Wang & Hewu Wang, 2013. "New energy vehicles in China: policies, demonstration, and progress," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 207-228, February.
    2. Greene, D.L. & Boudreaux, P.R. & Dean, D.J. & Fulkerson, W. & Gaddis, A.L. & Graham, R.L. & Graves, R.L. & Hopson, J.L. & Hughes, P. & Lapsa, M.V. & Mason, T.E. & Standaert, R.F. & Wilbanks, T.J. & Zu, 2010. "The importance of advancing technology to America's energy goals," Energy Policy, Elsevier, vol. 38(8), pages 3886-3890, August.
    3. Wang, Hewu & Ouyang, Minggao, 2007. "Transition strategy of the transportation energy and powertrain in China," Energy Policy, Elsevier, vol. 35(4), pages 2313-2319, April.
    4. Kelly, Jarod C. & MacDonald, Jason S. & Keoleian, Gregory A., 2012. "Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics," Applied Energy, Elsevier, vol. 94(C), pages 395-405.
    5. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    6. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    7. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    8. Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hewu Wang & Xiaobin Zhang & Lvwei Wu & Cong Hou & Huiming Gong & Qian Zhang & Minggao Ouyang, 2015. "Beijing passenger car travel survey: implications for alternative fuel vehicle deployment," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 817-835, June.
    2. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
    3. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    4. Calearo, Lisa & Marinelli, Mattia & Ziras, Charalampos, 2021. "A review of data sources for electric vehicle integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.
    6. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    7. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    8. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
    9. Boya Zhou & Shaojun Zhang & Ye Wu & Wenwei Ke & Xiaoyi He & Jiming Hao, 2018. "Energy-saving benefits from plug-in hybrid electric vehicles: perspectives based on real-world measurements," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 735-756, June.
    10. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    11. Yan Zhou & Michael Wang & Han Hao & Larry Johnson & Hewu Wang & Han Hao, 2015. "Plug-in electric vehicle market penetration and incentives: a global review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(5), pages 777-795, June.
    12. Xu, Xiaodan & Aziz, H.M. Abdul & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2020. "A scalable energy modeling framework for electric vehicles in regional transportation networks," Applied Energy, Elsevier, vol. 269(C).
    13. Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
    14. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    15. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    16. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2019. "Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    17. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    18. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    19. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Yu, Feifei & Wang, Liting & Li, Xiaotong, 2020. "The effects of government subsidies on new energy vehicle enterprises: The moderating role of intelligent transformation," Energy Policy, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:710-719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.