IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p434-d1319985.html
   My bibliography  Save this article

A Generic Model for Accurate Energy Estimation of Electric Vehicles

Author

Listed:
  • Muhammed Alhanouti

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

  • Frank Gauterin

    (Institute of Vehicle System Technology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

Abstract

A systematic simulation model is proposed in this research paper to estimate the energy consumption of electric vehicles. The main advantage of this model is that it is made in a generic and simplified way in order to be adaptable to different electric vehicles. The overall electrical power corresponding to the performed maneuver is estimated considering: a tabular form of electric motor efficiency, mechanical power losses, a generalized efficiency map of the power electronics, the auxiliary power losses, and an electro-thermal Lithium-Ion battery pack model. The battery model was developed in a previous work, which simulates the open circuit voltage curves at different temperatures and the alteration in the internal resistance of the battery cells. The proposed model is validated with experimental data from the maneuver tests. The battery model proved high accuracy in estimating the voltage values relevant to the WLTP2 driving cycle on the chassis roller test bench. Furthermore, the mechanical and electrical power were estimated with excellent matching compared to actual test field driving test measurements, giving only the measured vehicle speed and auxiliary power losses. Finally, the state of charge change is predicted accurately along the performed test field dynamic maneuver.

Suggested Citation

  • Muhammed Alhanouti & Frank Gauterin, 2024. "A Generic Model for Accurate Energy Estimation of Electric Vehicles," Energies, MDPI, vol. 17(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:434-:d:1319985
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marongiu, Andrea & Nußbaum, Felix Gerd Wilhelm & Waag, Wladislaw & Garmendia, Maitane & Sauer, Dirk Uwe, 2016. "Comprehensive study of the influence of aging on the hysteresis behavior of a lithium iron phosphate cathode-based lithium ion battery – An experimental investigation of the hysteresis," Applied Energy, Elsevier, vol. 171(C), pages 629-645.
    2. Enjian Yao & Meiying Wang & Yuanyuan Song & Yang Yang, 2013. "State of Charge Estimation Based on Microscopic Driving Parameters for Electric Vehicle's Battery," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-6, December.
    3. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    4. Sun, Tao & Xu, Yuwen & Feng, Lihong & Xu, Bowen & Chen, Dizuo & Zhang, Fang & Han, Xuebing & Zhao, Lihui & Zheng, Yuejiu, 2022. "A vehicle-cloud collaboration strategy for remaining driving range estimation based on online traffic route information and future operation condition prediction," Energy, Elsevier, vol. 248(C).
    5. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    6. Cedric De Cauwer & Joeri Van Mierlo & Thierry Coosemans, 2015. "Energy Consumption Prediction for Electric Vehicles Based on Real-World Data," Energies, MDPI, vol. 8(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    2. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    3. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    4. Ye Yang & Zhongfu Tan & Yilong Ren, 2020. "Research on Factors That Influence the Fast Charging Behavior of Private Battery Electric Vehicles," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    5. Cong Zhang & Haitao Min & Yuanbin Yu & Dai Wang & Justin Luke & Daniel Opila & Samveg Saxena, 2016. "Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles," Energies, MDPI, vol. 9(11), pages 1-23, November.
    6. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Xing, Yang & Lv, Chen & Cao, Dongpu & Lu, Chao, 2020. "Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling," Applied Energy, Elsevier, vol. 261(C).
    8. Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
    9. Hamza Mediouni & Amal Ezzouhri & Zakaria Charouh & Khadija El Harouri & Soumia El Hani & Mounir Ghogho, 2022. "Energy Consumption Prediction and Analysis for Electric Vehicles: A Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-17, September.
    10. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    11. Pan, Yingjiu & Fang, Wenpeng & Ge, Zhenzhen & Li, Cheng & Wang, Caifeng & Guo, Baochang, 2024. "A hybrid on-line approach for predicting the energy consumption of electric buses based on vehicle dynamics and system identification," Energy, Elsevier, vol. 290(C).
    12. Vepsäläinen, Jari & Otto, Kevin & Lajunen, Antti & Tammi, Kari, 2019. "Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions," Energy, Elsevier, vol. 169(C), pages 433-443.
    13. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    14. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    15. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    16. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    17. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    18. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    19. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    20. Katsaprakakis, Dimitris Al & Voumvoulakis, Manolis, 2018. "A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives," Energy, Elsevier, vol. 161(C), pages 680-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:434-:d:1319985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.