IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v5y2012i6p2053-2070d18481.html
   My bibliography  Save this article

Factor Analysis of the Aggregated Electric Vehicle Load Based on Data Mining

Author

Listed:
  • Qinglai Guo

    (State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, China)

  • Yao Wang

    (State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, China)

  • Hongbin Sun

    (State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, China)

  • Zhengshuo Li

    (State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, China)

  • Shujun Xin

    (State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, China)

  • Boming Zhang

    (State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, China)

Abstract

Electric vehicles (EVs) and the related infrastructure are being developed rapidly. In order to evaluate the impact of factors on the aggregated EV load and to coordinate charging, a model is established to capture the relationship between the charging load and important factors based on data mining. The factors can be categorized as internal and external. The internal factors include the EV battery size, charging rate at different places, penetration of the charging infrastructure, and charging habits. The external factor is the time-of-use pricing (TOU) policy. As a massive input data is necessary for data mining, an algorithm is implemented to generate a massive sample as input data which considers real-world travel patterns based on a historical travel dataset. With the input data, linear regression was used to build a linear model whose inputs were the internal factors. The impact of the internal factors on the EV load can be quantified by analyzing the sign, value, and temporal distribution of the model coefficients. The results showed that when no TOU policy is implemented, the rate of charging at home and range anxiety exerts the greatest influence on EV load. For the external factor, a support vector regression technique was used to build a relationship between the TOU policy and EV load. Then, an optimization model based on the relationship was proposed to devise a TOU policy that levels the load. The results suggest that implementing a TOU policy reduces the difference between the peak and valley loads remarkably.

Suggested Citation

  • Qinglai Guo & Yao Wang & Hongbin Sun & Zhengshuo Li & Shujun Xin & Boming Zhang, 2012. "Factor Analysis of the Aggregated Electric Vehicle Load Based on Data Mining," Energies, MDPI, vol. 5(6), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:2053-2070:d:18481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/5/6/2053/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/5/6/2053/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Zhang & Haitao Min & Yuanbin Yu & Dai Wang & Justin Luke & Daniel Opila & Samveg Saxena, 2016. "Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles," Energies, MDPI, vol. 9(11), pages 1-23, November.
    2. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    3. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    4. Yiqi Lu & Yongpan Li & Da Xie & Enwei Wei & Xianlu Bao & Huafeng Chen & Xiancheng Zhong, 2018. "The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load," Energies, MDPI, vol. 11(11), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Shisheng & Safiullah, Hameed & Xiao, Jingjie & Hodge, Bri-Mathias S. & Hoffman, Ray & Soller, Joan & Jones, Doug & Dininger, Dennis & Tyner, Wallace E. & Liu, Andrew & Pekny, Joseph F., 2012. "The effects of electric vehicles on residential households in the city of Indianapolis," Energy Policy, Elsevier, vol. 49(C), pages 442-455.
    2. Gerald Broneske & David Wozabal, 2017. "How Do Contract Parameters Influence the Economics of Vehicle-to-Grid?," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 150-164, February.
    3. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    4. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    5. Xiaohua Zhang & Jun Xie & Zhengwei Zhu & Jianfeng Zheng & Hao Qiang & Hailong Rong, 2016. "Smart Grid Cost-Emission Unit Commitment via Co-Evolutionary Agents," Energies, MDPI, vol. 9(10), pages 1-13, October.
    6. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    7. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    8. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    9. Traut, Elizabeth & Hendrickson, Chris & Klampfl, Erica & Liu, Yimin & Michalek, Jeremy J., 2012. "Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost," Energy Policy, Elsevier, vol. 51(C), pages 524-534.
    10. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    11. Ernst, Christian-Simon & Hackbarth, André & Madlener, Reinhard & Lunz, Benedikt & Uwe Sauer, Dirk & Eckstein, Lutz, 2011. "Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany," Energy Policy, Elsevier, vol. 39(10), pages 5871-5882, October.
    12. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    13. Zhong, Zewei & Hu, Wuyang & Zhao, Xiaoli, 2024. "Rethinking electric vehicle smart charging and greenhouse gas emissions: Renewable energy growth, fuel switching, and efficiency improvement," Applied Energy, Elsevier, vol. 361(C).
    14. Nurre, Sarah G. & Bent, Russell & Pan, Feng & Sharkey, Thomas C., 2014. "Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid," Energy Policy, Elsevier, vol. 67(C), pages 364-377.
    15. Wu, Di & Aliprantis, Dionysios C., 2013. "Modeling light-duty plug-in electric vehicles for national energy and transportation planning," Energy Policy, Elsevier, vol. 63(C), pages 419-432.
    16. Yang, Christopher, 2013. "A framework for allocating greenhouse gas emissions from electricity generation to plug-in electric vehicle charging," Energy Policy, Elsevier, vol. 60(C), pages 722-732.
    17. Fiamma Perez-Prada & Andres Monzon & Cristina Valdes, 2017. "Managing Traffic Flows for Cleaner Cities: The Role of Green Navigation Systems," Energies, MDPI, vol. 10(6), pages 1-18, June.
    18. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    19. Xiao, Xu & Chen, Zi-Rui & Nie, Pu-Yan, 2020. "Analysis of two subsidies for EVs: Based on an expanded theoretical discrete-choice model," Energy, Elsevier, vol. 208(C).
    20. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:5:y:2012:i:6:p:2053-2070:d:18481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.