IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p5973-5996d51338.html
   My bibliography  Save this article

Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

Author

Listed:
  • Morgan Rossander

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

  • Eduard Dyachuk

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

  • Senad Apelfröjd

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

  • Kristian Trolin

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

  • Anders Goude

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

  • Hans Bernhoff

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

  • Sandra Eriksson

    (Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, 751-21 Uppsala, Sweden)

Abstract

Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. The maximum errors of the forces and accompanying weather data that can be obtained with the system are carefully estimated. Measured forces from the four load cells are presented, as well as the normal and tangential forces derived from them and a comparison with theoretical data. The measured torque and bending moment are also provided. The influence of the load cells on the turbine dynamics has also been evaluated. For the aerodynamic normal force, the system provides periodic data in agreement with simulations. Unexpected mechanical oscillations are present in the tangential force, introduced by the turbine dynamics. The measurement errors are of an acceptable size and often depend on the measured variable. Equations are presented for the calculation of measurement errors.

Suggested Citation

  • Morgan Rossander & Eduard Dyachuk & Senad Apelfröjd & Kristian Trolin & Anders Goude & Hans Bernhoff & Sandra Eriksson, 2015. "Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells," Energies, MDPI, vol. 8(6), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5973-5996:d:51338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/5973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/5973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eriksson, Sandra & Solum, Andreas & Leijon, Mats & Bernhoff, Hans, 2008. "Simulations and experiments on a 12kW direct driven PM synchronous generator for wind power," Renewable Energy, Elsevier, vol. 33(4), pages 674-681.
    2. Eduard Dyachuk & Anders Goude, 2015. "Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model," Energies, MDPI, vol. 8(2), pages 1-20, February.
    3. Kjellin, J. & Bülow, F. & Eriksson, S. & Deglaire, P. & Leijon, M. & Bernhoff, H., 2011. "Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 36(11), pages 3050-3053.
    4. Andrew Shires, 2013. "Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept," Energies, MDPI, vol. 6(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nianxi Yue & Congxin Yang & Shoutu Li, 2024. "The Influence of Reduced Frequency on H-VAWT Aerodynamic Performance and Flow Field Near Blades," Energies, MDPI, vol. 17(18), pages 1-20, September.
    2. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    3. Eduard Dyachuk & Morgan Rossander & Anders Goude & Hans Bernhoff, 2015. "Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(8), pages 1-15, August.
    4. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    5. Morgan Rossander & Anders Goude & Sandra Eriksson, 2017. "Critical Speed Control for a Fixed Blade Variable Speed Wind Turbine," Energies, MDPI, vol. 10(11), pages 1-21, October.
    6. Roummani, Khayra & Hamouda, Messaoud & Mazari, Benyounes & Bendjebbar, Mokhtar & Koussa, Khaled & Ferroudji, Fateh & Necaibia, Ammar, 2019. "A new concept in direct-driven vertical axis wind energy conversion system under real wind speed with robust stator power control," Renewable Energy, Elsevier, vol. 143(C), pages 478-487.
    7. Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
    8. Victor Mendoza & Anders Goude, 2020. "Validation of Actuator Line and Vortex Models Using Normal Forces Measurements of a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-16, January.
    9. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    10. Anders Goude & Morgan Rossander, 2017. "Force Measurements on a VAWT Blade in Parked Conditions," Energies, MDPI, vol. 10(12), pages 1-15, November.
    11. Nguyen, Van-Dang & Jansson, Johan & Goude, Anders & Hoffman, Johan, 2019. "Direct Finite Element Simulation of the turbulent flow past a vertical axis wind turbine," Renewable Energy, Elsevier, vol. 135(C), pages 238-247.
    12. Eduard Dyachuk & Anders Goude, 2015. "Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(10), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduard Dyachuk & Anders Goude, 2015. "Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(10), pages 1-21, October.
    2. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    3. Anders Goude & Morgan Rossander, 2017. "Force Measurements on a VAWT Blade in Parked Conditions," Energies, MDPI, vol. 10(12), pages 1-15, November.
    4. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    5. Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
    6. Eduard Dyachuk & Morgan Rossander & Anders Goude & Hans Bernhoff, 2015. "Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(8), pages 1-15, August.
    7. Victor Mendoza & Anders Goude, 2020. "Validation of Actuator Line and Vortex Models Using Normal Forces Measurements of a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-16, January.
    8. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
    9. Stefan Sjökvist & Sandra Eriksson, 2017. "Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions," Energies, MDPI, vol. 10(10), pages 1-12, October.
    10. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    11. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    12. Lam, H.F. & Peng, H.Y., 2016. "Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations," Renewable Energy, Elsevier, vol. 90(C), pages 386-398.
    13. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    14. Ding, Yu & Kumar, Nitesh & Prakash, Abhinav & Kio, Adaiyibo E. & Liu, Xin & Liu, Lei & Li, Qingchang, 2021. "A case study of space-time performance comparison of wind turbines on a wind farm," Renewable Energy, Elsevier, vol. 171(C), pages 735-746.
    15. Goude, Anders & Bülow, Fredrik, 2013. "Robust VAWT control system evaluation by coupled aerodynamic and electrical simulations," Renewable Energy, Elsevier, vol. 59(C), pages 193-201.
    16. Oh, Ki-Yong & Park, Joon-Young & Lee, Jun-Shin & Lee, JaeKyung, 2015. "Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions," Renewable Energy, Elsevier, vol. 79(C), pages 150-160.
    17. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.
    18. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    19. Farooqui, Suhail Zaki, 2012. "Conversion of squirrel cage induction motors to wind turbine PMG," Renewable Energy, Elsevier, vol. 41(C), pages 345-349.
    20. Chun-Yu Hsiao & Sheng-Nian Yeh & Jonq-Chin Hwang, 2014. "Design of High Performance Permanent-Magnet Synchronous Wind Generators," Energies, MDPI, vol. 7(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:5973-5996:d:51338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.