IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019856.html
   My bibliography  Save this article

A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques

Author

Listed:
  • Deng, Wanru
  • Liu, Liqin
  • Dai, Yuanjun
  • Wu, Haitao
  • Yuan, Zhiming

Abstract

There is renewed interest in floating vertical axis wind turbines (FVAWTs) as offshore wind turbines progressively increase in size and move into deeper waters. To explore the potential of large-scale FVAWTs for future commercialization, it is crucial to investigate blade deformations using an accurate and effective method. In this study, we developed a hybrid model, namely, the SVST-ANN, which integrates dynamic theory and machine learning techniques to predict blade deformations. Specifically, an artificial neural network (ANN) module is incorporated into the slack coupled vertical axis wind turbine simulation tool (SVST), which significantly reduces the total computational time. A comparative study was conducted between the SVST-ANN model and the traditional SVST model, employing a 10 MW helical-type FVAWT as an example. The results show that the SVST-ANN model can accurately and efficiently predict blade deformations. The maximum errors for the maximum value, average value, and standard deviation across all nodes are minimal, with a corresponding computational time reduction of approximately 60 %. This study provides a novel method for investigating the dynamic behavior of the FVAWTs, which is more effective for calculating the elastic deformations of blades than traditional numerical methods.

Suggested Citation

  • Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019856
    DOI: 10.1016/j.energy.2024.132211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. de N Santos, Francisco & D’Antuono, Pietro & Robbelein, Koen & Noppe, Nymfa & Weijtjens, Wout & Devriendt, Christof, 2023. "Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks," Renewable Energy, Elsevier, vol. 205(C), pages 461-474.
    3. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    4. Yang, Can & Cheng, Zhengshun & Xiao, Longfei & Tian, Xinliang & Liu, Mingyue & Wen, Binrong, 2022. "A gradient-descent-based method for design of performance-scaled rotor for floating wind turbine model testing in wave basins," Renewable Energy, Elsevier, vol. 187(C), pages 144-155.
    5. Karimian, S.M.H. & Abdolahifar, Abolfazl, 2020. "Performance investigation of a new Darrieus Vertical Axis Wind Turbine," Energy, Elsevier, vol. 191(C).
    6. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    7. Palanisamy Mohan Kumar & Krishnamoorthi Sivalingam & Teik-Cheng Lim & Seeram Ramakrishna & He Wei, 2019. "Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines," Clean Technol., MDPI, vol. 1(1), pages 1-19, August.
    8. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    9. Sergiienko, N.Y. & da Silva, L.S.P. & Bachynski-Polić, E.E. & Cazzolato, B.S. & Arjomandi, M. & Ding, B., 2022. "Review of scaling laws applied to floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines," Renewable Energy, Elsevier, vol. 107(C), pages 604-619.
    11. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    12. Möllerström, Erik & Gipe, Paul & Beurskens, Jos & Ottermo, Fredric, 2019. "A historical review of vertical axis wind turbines rated 100 kW and above," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 1-13.
    13. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    14. Yan Li & Liqin Liu & Ying Guo & Wanru Deng, 2022. "Numerical Prediction on the Dynamic Response of a Helical Floating Vertical Axis Wind Turbine Based on an Aero-Hydro-Mooring-Control Coupled Model," Energies, MDPI, vol. 15(10), pages 1-21, May.
    15. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    16. Andrew Shires, 2013. "Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept," Energies, MDPI, vol. 6(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    3. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    4. Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
    5. Wang, Xinbao & Cai, Chang & Chen, Yewen & Chen, Yuejuan & Liu, Junbo & Xiao, Yang & Zhong, Xiaohui & Shi, Kezhong & Li, Qing'an, 2023. "Numerical verification of the dynamic aerodynamic similarity criterion for wind tunnel experiments of floating offshore wind turbines," Energy, Elsevier, vol. 283(C).
    6. Abel Arredondo-Galeana & Feargal Brennan, 2021. "Floating Offshore Vertical Axis Wind Turbines: Opportunities, Challenges and Way Forward," Energies, MDPI, vol. 14(23), pages 1-24, November.
    7. Erik Möllerström, 2019. "Wind Turbines from the Swedish Wind Energy Program and the Subsequent Commercialization Attempts—A Historical Review," Energies, MDPI, vol. 12(4), pages 1-12, February.
    8. Ma, Zhengjing & Mei, Gang, 2022. "A hybrid attention-based deep learning approach for wind power prediction," Applied Energy, Elsevier, vol. 323(C).
    9. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    10. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    11. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    12. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    13. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    14. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    16. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    17. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    18. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    20. Xiangyuan Zheng & Huadong Zheng & Yu Lei & Yi Li & Wei Li, 2020. "An Offshore Floating Wind–Solar–Aquaculture System: Concept Design and Extreme Response in Survival Conditions," Energies, MDPI, vol. 13(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.