IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224019856.html
   My bibliography  Save this article

A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques

Author

Listed:
  • Deng, Wanru
  • Liu, Liqin
  • Dai, Yuanjun
  • Wu, Haitao
  • Yuan, Zhiming

Abstract

There is renewed interest in floating vertical axis wind turbines (FVAWTs) as offshore wind turbines progressively increase in size and move into deeper waters. To explore the potential of large-scale FVAWTs for future commercialization, it is crucial to investigate blade deformations using an accurate and effective method. In this study, we developed a hybrid model, namely, the SVST-ANN, which integrates dynamic theory and machine learning techniques to predict blade deformations. Specifically, an artificial neural network (ANN) module is incorporated into the slack coupled vertical axis wind turbine simulation tool (SVST), which significantly reduces the total computational time. A comparative study was conducted between the SVST-ANN model and the traditional SVST model, employing a 10 MW helical-type FVAWT as an example. The results show that the SVST-ANN model can accurately and efficiently predict blade deformations. The maximum errors for the maximum value, average value, and standard deviation across all nodes are minimal, with a corresponding computational time reduction of approximately 60 %. This study provides a novel method for investigating the dynamic behavior of the FVAWTs, which is more effective for calculating the elastic deformations of blades than traditional numerical methods.

Suggested Citation

  • Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019856
    DOI: 10.1016/j.energy.2024.132211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224019856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224019856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.