IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp564-575.html
   My bibliography  Save this article

Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines

Author

Listed:
  • Delafin, P.-L.
  • Nishino, T.
  • Kolios, A.
  • Wang, L.

Abstract

A Double Multiple Streamtube model, a free-wake vortex model (both widely used for vertical axis wind turbine design) and RANS CFD simulations are used in this work to predict the performance of the 17 m Vertical Axis Wind Turbine, field tested by Sandia National Laboratories. The three-dimensional, full scale calculations are compared with the experiments in terms of power coefficient, power and instantaneous turbine torque to assess the validity of each model. Additionally, the two aerodynamic models and RANS CFD are compared to each other in terms of thrust and lateral force. The two models and CFD agree well with the experiments at the turbine optimal tip speed ratio. However, away from the optimal tip speed ratio, the streamtube model significantly deviates from the experimental data and from the other numerical models. RANS CFD gives a good agreement with the experiments, slightly underestimating the power coefficient at every tip speed ratio tested. The vortex model proves to be a useful tool with a better accuracy than the streamtube model and a much lower computational cost compared to RANS CFD.

Suggested Citation

  • Delafin, P.-L. & Nishino, T. & Kolios, A. & Wang, L., 2017. "Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines," Renewable Energy, Elsevier, vol. 109(C), pages 564-575.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:564-575
    DOI: 10.1016/j.renene.2017.03.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117302562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maître, T. & Amet, E. & Pellone, C., 2013. "Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments," Renewable Energy, Elsevier, vol. 51(C), pages 497-512.
    2. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    3. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    4. Tescione, G. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2016. "Analysis of a free vortex wake model for the study of the rotor and near wake flow of a vertical axis wind turbine," Renewable Energy, Elsevier, vol. 87(P1), pages 552-563.
    5. Morgan Rossander & Eduard Dyachuk & Senad Apelfröjd & Kristian Trolin & Anders Goude & Hans Bernhoff & Sandra Eriksson, 2015. "Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells," Energies, MDPI, vol. 8(6), pages 1-24, June.
    6. Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
    7. Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
    8. Marsh, Philip & Ranmuthugala, Dev & Penesis, Irene & Thomas, Giles, 2015. "Three-dimensional numerical simulations of straight-bladed vertical axis tidal turbines investigating power output, torque ripple and mounting forces," Renewable Energy, Elsevier, vol. 83(C), pages 67-77.
    9. Andrew Shires, 2013. "Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept," Energies, MDPI, vol. 6(5), pages 1-20, May.
    10. Kjellin, J. & Bülow, F. & Eriksson, S. & Deglaire, P. & Leijon, M. & Bernhoff, H., 2011. "Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 36(11), pages 3050-3053.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franchina, N. & Kouaissah, O. & Persico, G. & Savini, M., 2022. "Three-dimensional modeling and investigation of the flow around a troposkein vertical axis wind turbine at different operating conditions," Renewable Energy, Elsevier, vol. 199(C), pages 368-381.
    2. Richmond, M. & Sobey, A. & Pandit, R. & Kolios, A., 2020. "Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning," Renewable Energy, Elsevier, vol. 161(C), pages 650-661.
    3. Santiago Laín & Pablo Cortés & Omar Darío López, 2020. "Numerical Simulation of the Flow around a Straight Blade Darrieus Water Turbine," Energies, MDPI, vol. 13(5), pages 1-27, March.
    4. Posa, Antonio, 2022. "Wake characterization of paired cross-flow turbines," Renewable Energy, Elsevier, vol. 196(C), pages 1064-1094.
    5. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    6. Ould Moussa, Mohamed, 2020. "Experimental and numerical performances analysis of a small three blades wind turbine," Energy, Elsevier, vol. 203(C).
    7. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    8. Chen, Yaoran & Su, Jie & Han, Zhaolong & Zhao, Yongsheng & Zhou, Dai & Yang, He & Bao, Yan & Lei, Hang, 2020. "A shape optimization of ϕ-shape Darrieus wind turbine under a given range of inlet wind speed," Renewable Energy, Elsevier, vol. 159(C), pages 286-299.
    9. Ji Hao Zhang & Fue-Sang Lien & Eugene Yee, 2022. "Investigations of Vertical-Axis Wind-Turbine Group Synergy Using an Actuator Line Model," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hand, Brian & Cashman, Andrew, 2018. "Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study," Renewable Energy, Elsevier, vol. 129(PA), pages 12-31.
    2. Stefania Zanforlin & Fulvio Buzzi & Marika Francesconi, 2019. "Performance Analysis of Hydrofoil Shaped and Bi-Directional Diffusers for Cross Flow Tidal Turbines in Single and Double-Rotor Configurations," Energies, MDPI, vol. 12(2), pages 1-25, January.
    3. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    4. Pierre-Luc Delafin & François Deniset & Jacques André Astolfi & Frédéric Hauville, 2021. "Performance Improvement of a Darrieus Tidal Turbine with Active Variable Pitch," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Eduard Dyachuk & Anders Goude, 2015. "Numerical Validation of a Vortex Model against ExperimentalData on a Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(10), pages 1-21, October.
    6. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
    7. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    8. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    9. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    10. Yang, P. & Xiang, J. & Fang, F. & Pain, C.C., 2019. "A fidelity fluid-structure interaction model for vertical axis tidal turbines in turbulence flows," Applied Energy, Elsevier, vol. 236(C), pages 465-477.
    11. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    12. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    13. Atlaschian, Omid & Metzger, M., 2021. "Numerical model of vertical axis wind turbine performance in realistic gusty wind conditions," Renewable Energy, Elsevier, vol. 165(P1), pages 211-223.
    14. Lei, Hang & Zhou, Dai & Lu, Jiabao & Chen, Caiyong & Han, Zhaolong & Bao, Yan, 2017. "The impact of pitch motion of a platform on the aerodynamic performance of a floating vertical axis wind turbine," Energy, Elsevier, vol. 119(C), pages 369-383.
    15. Ghigo, Alberto & Faraggiana, Emilio & Giorgi, Giuseppe & Mattiazzo, Giuliana & Bracco, Giovanni, 2024. "Floating Vertical Axis Wind Turbines for offshore applications among potentialities and challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    16. Eduard Dyachuk & Morgan Rossander & Anders Goude & Hans Bernhoff, 2015. "Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(8), pages 1-15, August.
    17. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    18. Zhong, Junwei & Li, Jingyin & Guo, Penghua & Wang, Yu, 2019. "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod," Energy, Elsevier, vol. 174(C), pages 246-260.
    19. Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
    20. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:564-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.