IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3196-d373814.html
   My bibliography  Save this article

Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils

Author

Listed:
  • Krzysztof Rogowski

    (Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland)

  • Martin Otto Laver Hansen

    (Department of Wind Energy, Technical University of Denmark, DK2800 Lyngby, Denmark)

  • Galih Bangga

    (Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, 70569 Stuttgart, Germany)

Abstract

The purpose of this paper is to estimate the H-Darrieus wind turbine aerodynamic performance, aerodynamic blade loads, and velocity profiles downstream behind the rotor. The wind turbine model is based on the rotor designed by McDonnell Aircraft Company. The model proposed here consists of three fixed straight blades; in the future, this model is planned to be developed with controlled blades. The study was conducted using the unsteady Reynolds averaged Navier–Stokes (URANS) approach with the k-ω shear stress transport (SST) turbulence model. The numerical two-dimensional model was verified using two other independent aerodynamic approaches: a vortex model and the extended version of the computational fluid dynamics (CFD) code FLOWer. All utilized numerical codes gave similar result of the instantaneous aerodynamic blade loads. In addition, steady-state calculations for the applied airfoils were also made using the same numerical model as for the vertical axis wind turbine (VAWT) to obtain lift and drag coefficients. The obtained values of lift and drag force coefficients, for a Reynolds number of 2.9 million, agree with the predictions of the experiment and XFOIL over a wide range of angle of attack. A maximum rotor power coefficient of 0.5 is obtained, which makes this impeller attractive from the point of view of further research. Research has shown that, if this rotor were to work with fixed blades, it is recommended to use the NACA 1418 airfoil instead of the original NACA 0018.

Suggested Citation

  • Krzysztof Rogowski & Martin Otto Laver Hansen & Galih Bangga, 2020. "Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils," Energies, MDPI, vol. 13(12), pages 1-28, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3196-:d:373814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhong, Junwei & Li, Jingyin & Guo, Penghua & Wang, Yu, 2019. "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod," Energy, Elsevier, vol. 174(C), pages 246-260.
    2. Raciti Castelli, Marco & Englaro, Alessandro & Benini, Ernesto, 2011. "The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD," Energy, Elsevier, vol. 36(8), pages 4919-4934.
    3. Krzysztof Rogowski, 2019. "CFD Computation of the H-Darrieus Wind Turbine—The Impact of the Rotating Shaft on the Rotor Performance," Energies, MDPI, vol. 12(13), pages 1-17, June.
    4. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    5. Tescione, G. & Ragni, D. & He, C. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2014. "Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry," Renewable Energy, Elsevier, vol. 70(C), pages 47-61.
    6. Trivellato, F. & Raciti Castelli, M., 2014. "On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis," Renewable Energy, Elsevier, vol. 62(C), pages 53-62.
    7. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    8. Lu Ma & Xiaodong Wang & Jian Zhu & Shun Kang, 2019. "Dynamic Stall of a Vertical-Axis Wind Turbine and Its Control Using Plasma Actuation," Energies, MDPI, vol. 12(19), pages 1-18, September.
    9. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    10. Balduzzi, Francesco & Bianchini, Alessandro & Maleci, Riccardo & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Critical issues in the CFD simulation of Darrieus wind turbines," Renewable Energy, Elsevier, vol. 85(C), pages 419-435.
    11. Morgan Rossander & Eduard Dyachuk & Senad Apelfröjd & Kristian Trolin & Anders Goude & Hans Bernhoff & Sandra Eriksson, 2015. "Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells," Energies, MDPI, vol. 8(6), pages 1-24, June.
    12. Möllerström, Erik & Gipe, Paul & Beurskens, Jos & Ottermo, Fredric, 2019. "A historical review of vertical axis wind turbines rated 100 kW and above," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 1-13.
    13. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Iida, Kohei & Okumura, Yuta, 2016. "Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism," Energy, Elsevier, vol. 99(C), pages 20-31.
    14. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    15. Tescione, G. & Simão Ferreira, C.J. & van Bussel, G.J.W., 2016. "Analysis of a free vortex wake model for the study of the rotor and near wake flow of a vertical axis wind turbine," Renewable Energy, Elsevier, vol. 87(P1), pages 552-563.
    16. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    17. Sina Shamsoddin & Fernando Porté-Agel, 2014. "Large Eddy Simulation of Vertical Axis Wind Turbine Wakes," Energies, MDPI, vol. 7(2), pages 1-23, February.
    18. Bedon, Gabriele & Schmidt Paulsen, Uwe & Aagaard Madsen, Helge & Belloni, Federico & Raciti Castelli, Marco & Benini, Ernesto, 2017. "Computational assessment of the DeepWind aerodynamic performance with different blade and airfoil configurations," Applied Energy, Elsevier, vol. 185(P2), pages 1100-1108.
    19. Jeremiah Ishie & Kai Wang & Muk Chen Ong, 2016. "Structural Dynamic Analysis of Semi-Submersible Floating Vertical Axis Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-36, December.
    20. Senad Apelfröjd & Sandra Eriksson & Hans Bernhoff, 2016. "A Review of Research on Large Scale Modern Vertical Axis Wind Turbines at Uppsala University," Energies, MDPI, vol. 9(7), pages 1-16, July.
    21. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    22. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Augustyn & Filip Lisowski, 2023. "Experimental and Numerical Studies on a Single Coherent Blade of a Vertical Axis Carousel Wind Rotor," Energies, MDPI, vol. 16(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    4. Tirandaz, M. Rasoul & Rezaeiha, Abdolrahim, 2021. "Effect of airfoil shape on power performance of vertical axis wind turbines in dynamic stall: Symmetric Airfoils," Renewable Energy, Elsevier, vol. 173(C), pages 422-441.
    5. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    6. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    7. Villeneuve, Thierry & Dumas, Guy, 2021. "Impact of some design considerations on the wake recovery of vertical-axis turbines," Renewable Energy, Elsevier, vol. 180(C), pages 1419-1438.
    8. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    9. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    10. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    11. Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhao, Yongsheng, 2020. "Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines," Applied Energy, Elsevier, vol. 260(C).
    12. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    13. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    14. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    15. Peng, H.Y. & Han, Z.D. & Liu, H.J. & Lin, K. & Lam, H.F., 2020. "Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations," Renewable Energy, Elsevier, vol. 147(P1), pages 43-54.
    16. Syawitri, T.P. & Yao, Y.F. & Chandra, B. & Yao, J., 2021. "Comparison study of URANS and hybrid RANS-LES models on predicting vertical axis wind turbine performance at low, medium and high tip speed ratio ranges," Renewable Energy, Elsevier, vol. 168(C), pages 247-269.
    17. Chen, Jian & Pan, Xiong & Wang, Canxing & Hu, Guojun & Xu, Hongtao & Liu, Pengwei, 2019. "Airfoil parameterization evaluation based on a modified PARASEC method for a H-Darrious rotor," Energy, Elsevier, vol. 187(C).
    18. Ian D. Brownstein & Nathaniel J. Wei & John O. Dabiri, 2019. "Aerodynamically Interacting Vertical-Axis Wind Turbines: Performance Enhancement and Three-Dimensional Flow," Energies, MDPI, vol. 12(14), pages 1-23, July.
    19. Tong, Guoqiang & Li, Yan & Tagawa, Kotaro & Feng, Fang, 2023. "Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation," Energy, Elsevier, vol. 265(C).
    20. Mohamed, M.H., 2019. "Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment," Energy, Elsevier, vol. 177(C), pages 367-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3196-:d:373814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.