IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2498-2514d35340.html
   My bibliography  Save this article

Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units

Author

Listed:
  • Hsiaokang Ma

    (Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan)

  • Weiyang Cheng

    (Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan)

  • Fuming Fang

    (Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan)

  • Chinbing Hsu

    (FIELD Energy Ltd., Zhudong 31061, Taiwan)

  • Chengsheng Lin

    (FIELD Energy Ltd., Zhudong 31061, Taiwan)

Abstract

In this study, fuel, oxidant supply and cooling systems with microcontroller units (MCU) are developed in a compact design to fit two 5 kW proton exchange membrane fuel cell (PEMFC) stacks. At the initial stage, the testing facility of the system has a large volume (2.0 m × 2.0 m × 1.5 m) with a longer pipeline and excessive control sensors for safe testing. After recognizing the performance and stability of stack, the system is redesigned to fit in a limited space (0.4 m × 0.5 m × 0.8 m). Furthermore, the stack performance is studied under different hydrogen recycling modes. Then, two similar 5 kW stacks are directly coupled with diodes to obtain a higher power output and safe operation. The result shows that the efficiency of the 5 kW stack is 43.46% with a purge period of 2 min with hydrogen recycling and that the hydrogen utilization rate µ f is 66.31%. In addition, the maximum power output of the twin-coupled module (a power module with two stacks in electrical cascade/parallel arrangement) is 9.52 kW.

Suggested Citation

  • Hsiaokang Ma & Weiyang Cheng & Fuming Fang & Chinbing Hsu & Chengsheng Lin, 2014. "Compact Design of 10 kW Proton Exchange Membrane Fuel Cell Stack Systems with Microcontroller Units," Energies, MDPI, vol. 7(4), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2498-2514:d:35340
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Dudek & Andrzej Raźniak & Maciej Rosół & Tomasz Siwek & Piotr Dudek, 2020. "Design, Development, and Performance of a 10 kW Polymer Exchange Membrane Fuel Cell Stack as Part of a Hybrid Power Source Designed to Supply a Motor Glider," Energies, MDPI, vol. 13(17), pages 1-29, August.
    2. Devin Fowler & Vladimir Gurau & Daniel Cox, 2019. "Bridging the Gap between Automated Manufacturing of Fuel Cell Components and Robotic Assembly of Fuel Cell Stacks," Energies, MDPI, vol. 12(19), pages 1-14, September.
    3. Mirko Sgambetterra & Sergio Brutti & Valentina Allodi & Gino Mariotto & Stefania Panero & Maria Assunta Navarra, 2016. "Critical Filler Concentration in Sulfated Titania-Added Nafion™ Membranes for Fuel Cell Applications," Energies, MDPI, vol. 9(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    2. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    3. Hou, Yongping & Shen, Caoyuan & Hao, Dong & Liu, Yanan & Wang, Hong, 2014. "A dynamic model for hydrogen consumption of fuel cell stacks considering the effects of hydrogen purge operation," Renewable Energy, Elsevier, vol. 62(C), pages 672-678.
    4. Chen, Daifen & Zeng, Qice & Su, Shichuan & Bi, Wuxi & Ren, Zhiqiang, 2013. "Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold," Applied Energy, Elsevier, vol. 112(C), pages 1100-1107.
    5. Lopez Lopez, Guadalupe & Schacht Rodriguez, Ricardo & Alvarado, Victor M. & Gomez-Aguilar, J.F. & Mota, Juan E. & Sandoval, Cinda, 2017. "Hybrid PEMFC-supercapacitor system: Modeling and energy management in energetic macroscopic representation," Applied Energy, Elsevier, vol. 205(C), pages 1478-1494.
    6. Yan, Wei-Mon & Wang, Xiao-Dong & Lee, Duu-Jong & Zhang, Xin-Xin & Guo, Yi-Fan & Su, Ay, 2011. "Experimental study of commercial size proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 88(1), pages 392-396, January.
    7. Hou, Yongping & Shen, Caoyuan & Yang, Zhihua & He, Yuntang, 2012. "A dynamic voltage model of a fuel cell stack considering the effects of hydrogen purge operation," Renewable Energy, Elsevier, vol. 44(C), pages 246-251.
    8. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    9. Lombardi, Simone & Di Ilio, Giovanni & Tribioli, Laura & Jannelli, Elio, 2023. "Optimal design of an adaptive energy management strategy for a fuel cell tractor operating in ports," Applied Energy, Elsevier, vol. 352(C).
    10. Wang, Qianqian & Tang, Fumin & Li, Bing & Dai, Haifeng & Zheng, Jim P. & Zhang, Cunman & Ming, Pingwen, 2022. "Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure," Applied Energy, Elsevier, vol. 308(C).
    11. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    12. Jung, Guo-Bin & Tzeng, Wei-Jen & Jao, Ting-Chu & Liu, Yu-Hsu & Yeh, Chia-Chen, 2013. "Investigation of porous carbon and carbon nanotube layer for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 101(C), pages 457-464.
    13. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    14. Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
    15. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    16. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    17. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    18. Jonas Breitinger & Mark Hellmann & Helerson Kemmer & Stephan Kabelac, 2023. "Automotive Fuel Cell Systems: Testing Highly Dynamic Scenarios," Energies, MDPI, vol. 16(2), pages 1-15, January.
    19. Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
    20. Shota Tochigi & Kiyoshi Dowaki, 2023. "Environmental Impact Assessment of PEM Fuel Cell Combined Heat and Power Generation System for Residential Application Considering Cathode Catalyst Layer Degradation," Energies, MDPI, vol. 16(4), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2498-2514:d:35340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.