IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i10p1654-1672d9764.html
   My bibliography  Save this article

Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms

Author

Listed:
  • Jingyu Yan

    (Shenzhen Institutes of Advance Technology, the Chinese Academy of Science , Shenzhen, China
    Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China)

  • Guoqing Xu

    (Shenzhen Institutes of Advance Technology, the Chinese Academy of Science , Shenzhen, China
    Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China)

  • Huihuan Qian

    (Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China)

  • Yangsheng Xu

    (Shenzhen Institutes of Advance Technology, the Chinese Academy of Science , Shenzhen, China
    Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China)

Abstract

State of Charge (SoC) estimation is one of the most significant and difficult techniques to promote the commercialization of electric vehicles (EVs). Suffering from various interference in vehicle driving environment and model uncertainties due to the strong time-variant property and inconsistency of batteries, the existing typical SoC estimators such as coulomb counting and extended Kalman filter cannot perform their theoretically optimal efficacy in practical applications. Aiming at enhancing the robustness of SoC estimation and improving accuracy under the real driving conditions with noises and uncertainties, this paper proposes a framework consisting of (1) an adaptive-? nonlinear diffusion filter to reduce the noise in current measurement, (2) a self-learning strategy to estimate and remove the zero-drift, (3) a coulomb counting algorithm to realize open-loop SoC estimation, (4) an H ? filter to implement closed-loop robust estimation, and (5) a data fusion unite to achieve the final estimation by integrating the advantages of the two SoC estimators. The availability and efficacy of each component have been demonstrated based on comparative studiesin simulation with the conventional approaches respectively, under the testing conditions of noises with various signal-noise-ratios, varying zero-drifts, and different model errors. The overall framework has also been verified to rationally and efficiently combine these components and achieve robust estimation results in the presence of kinds of noises and uncertainties.

Suggested Citation

  • Jingyu Yan & Guoqing Xu & Huihuan Qian & Yangsheng Xu, 2010. "Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms," Energies, MDPI, vol. 3(10), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:10:p:1654-1672:d:9764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/10/1654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/10/1654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    2. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    3. John Guirguis & Ryan Ahmed, 2024. "Transformer-Based Deep Learning Models for State of Charge and State of Health Estimation of Li-Ion Batteries: A Survey Study," Energies, MDPI, vol. 17(14), pages 1-13, July.
    4. Da Xie & Haoxiang Chu & Yupu Lu & Chenghong Gu & Furong Li & Yu Zhang, 2015. "The Concept of EV’s Intelligent Integrated Station and Its Energy Flow," Energies, MDPI, vol. 8(5), pages 1-28, May.
    5. Marat Sadykov & Sam Haines & Mark Broadmeadow & Geoff Walker & David William Holmes, 2023. "Practical Evaluation of Lithium-Ion Battery State-of-Charge Estimation Using Time-Series Machine Learning for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-34, February.
    6. He, Hongwen & Zhang, Xiaowei & Xiong, Rui & Xu, Yongli & Guo, Hongqiang, 2012. "Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 39(1), pages 310-318.
    7. Li, Zhirun & Xiong, Rui & Mu, Hao & He, Hongwen & Wang, Chun, 2017. "A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 363-371.
    8. Shifei Yuan & Hongjie Wu & Chengliang Yin, 2013. "State of Charge Estimation Using the Extended Kalman Filter for Battery Management Systems Based on the ARX Battery Model," Energies, MDPI, vol. 6(1), pages 1-27, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    2. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    3. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    4. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    5. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    6. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    7. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    8. Jae-Won Chang & Gyu-Sub Lee & Hyeon-Jin Moon & Mark B. Glick & Seung-Il Moon, 2019. "Coordinated Frequency and State-of-Charge Control with Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid," Energies, MDPI, vol. 12(9), pages 1-16, April.
    9. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    10. Panagiotis Eleftheriadis & Spyridon Giazitzis & Sonia Leva & Emanuele Ogliari, 2023. "Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview," Forecasting, MDPI, vol. 5(3), pages 1-24, September.
    11. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    12. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    13. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    14. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    15. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    16. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    18. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    19. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    20. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:10:p:1654-1672:d:9764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.