IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v369y2024ics0306261924009255.html
   My bibliography  Save this article

State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges

Author

Listed:
  • S, Vignesh
  • Che, Hang Seng
  • Selvaraj, Jeyraj
  • Tey, Kok Soon
  • Lee, Jia Woon
  • Shareef, Hussain
  • Errouissi, Rachid

Abstract

Lithium-ion Batteries (LiB) have a wide range of applications in daily life. However, as they get used over time, battery degradation becomes inevitable, which can lead to a drop in performance and a reduction in the battery’s cycle life. The State of Health (SoH) is widely regarded as the health indicator for the battery pack. In Electric Vehicle (EV) applications, the EV user defines the lower limit of SoH when they experience that the battery no longer supports the EV; at that point, the battery is said to be translated from first life to second life. The SoH estimations of Second Life Batteries (SLB) have plenty of uncertainties, such as the availability of battery’s previous history, non-uniform degradation in the EV application, variations in chemistry, and charging protocols defined by vehicle manufacturers, making the SoH estimation of SLB a challenging task. This paper discusses the equipment, timelines, computational complexity, health indicators, and list of parameters that need to be considered for the SoH estimation of SLB. The SoH estimation methods are classified into direct and indirect techniques. Direct assessment techniques involve cyclic ageing experiments followed by dismantling the battery for microscopic studies performed by previous researchers that were explained. Indirect assessment techniques include physical and chemical based approach, electrical, and Artificial Intelligence (AI)-based methods that estimate SoH indirectly through incremental, differential approaches and other parameters such as Integrated Voltage (IV) and Probability Density Function (PDF). Health indicator identifications play a vital role in indirect assessment methods to gain critical insights regarding battery degradation. The challenges involved in SoH estimation are categorized into equipment requirements, parameters, SoH accuracy and efforts required to compute SoH, which are discussed. Of all the SoH estimation methods, comparison of such methods in First Life Batteries (FLB) and SLB perspectives are discussed. To estimate the SoH of SLB, this paper explains all aspects, such as computational methods, filtering data, data sampling frequency, and the need for a specific algorithm to post-process the battery test data. Equipment availability and timelines are interrelated with the cost incurred in the SoH estimation of SLB. The efficacy and practicality of SoH estimation methods that are proposed for SLB is discussed. Overall, this paper provides necessary insights into the parameters required for SoH estimation and the computational and experimental methods that can be considered for estimating the SoH of SLB while some of the methods are applicable to FLB as well.

Suggested Citation

  • S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
  • Handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009255
    DOI: 10.1016/j.apenergy.2024.123542
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924009255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
    2. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
    3. Xuebing Han & Minggao Ouyang & Languang Lu & Jianqiu Li, 2014. "Cycle Life of Commercial Lithium-Ion Batteries with Lithium Titanium Oxide Anodes in Electric Vehicles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    4. Tao Zhang & Ningyuan Guo & Xiaoxia Sun & Jie Fan & Naifeng Yang & Junjie Song & Yuan Zou, 2021. "A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
    5. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    6. Li, Weihan & Cao, Decheng & Jöst, Dominik & Ringbeck, Florian & Kuipers, Matthias & Frie, Fabian & Sauer, Dirk Uwe, 2020. "Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries," Applied Energy, Elsevier, vol. 269(C).
    7. Lyu, Zhiqiang & Wang, Geng & Gao, Renjing, 2022. "Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework," Energy, Elsevier, vol. 251(C).
    8. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
    9. Manoj Mathew & Stefan Janhunen & Mahir Rashid & Frank Long & Michael Fowler, 2018. "Comparative Analysis of Lithium-Ion Battery Resistance Estimation Techniques for Battery Management Systems," Energies, MDPI, vol. 11(6), pages 1-15, June.
    10. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    11. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
    12. Son, Seho & Jeong, Siheon & Kwak, Eunji & Kim, Jun-hyeong & Oh, Ki-Yong, 2022. "Integrated framework for SOH estimation of lithium-ion batteries using multiphysics features," Energy, Elsevier, vol. 238(PA).
    13. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
    14. Xiaoyu Li & Chuxin Wu & Chen Fu & Shanpu Zheng & Jindong Tian, 2022. "State Characterization of Lithium-Ion Battery Based on Ultrasonic Guided Wave Scanning," Energies, MDPI, vol. 15(16), pages 1-19, August.
    15. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state-of-charge estimation of Li-ion batteries based on multi-model switching strategy," Applied Energy, Elsevier, vol. 137(C), pages 427-434.
    16. Jen-Hao Teng & Rong-Jhang Chen & Ping-Tse Lee & Che-Wei Hsu, 2023. "Accurate and Efficient SOH Estimation for Retired Batteries," Energies, MDPI, vol. 16(3), pages 1-17, January.
    17. Yang, Jufeng & Cai, Yingfeng & Pan, Chaofeng & Mi, Chris, 2019. "A novel resistor-inductor network-based equivalent circuit model of lithium-ion batteries under constant-voltage charging condition," Applied Energy, Elsevier, vol. 254(C).
    18. Galeotti, Matteo & Cinà, Lucio & Giammanco, Corrado & Cordiner, Stefano & Di Carlo, Aldo, 2015. "Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy," Energy, Elsevier, vol. 89(C), pages 678-686.
    19. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    20. Yang, Jufeng & Xia, Bing & Huang, Wenxin & Fu, Yuhong & Mi, Chris, 2018. "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied Energy, Elsevier, vol. 212(C), pages 1589-1600.
    21. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    22. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    23. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiwei Wang & Hao Li & Chunling Wu & Yujun Shi & Linxuan Zhang & Yi An, 2024. "State of Health Estimations for Lithium-Ion Batteries Based on MSCNN," Energies, MDPI, vol. 17(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    2. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    3. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
    4. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).
    5. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    6. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    7. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
    8. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    9. Sun, Jing & Fan, Chaoqun & Yan, Huiyi, 2024. "SOH estimation of lithium-ion batteries based on multi-feature deep fusion and XGBoost," Energy, Elsevier, vol. 306(C).
    10. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
    11. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    12. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Prakash Venugopal & Vigneswaran T., 2019. "State-of-Health Estimation of Li-ion Batteries in Electric Vehicle Using IndRNN under Variable Load Condition," Energies, MDPI, vol. 12(22), pages 1-29, November.
    14. Li, Renzheng & Hong, Jichao & Zhang, Huaqin & Chen, Xinbo, 2022. "Data-driven battery state of health estimation based on interval capacity for real-world electric vehicles," Energy, Elsevier, vol. 257(C).
    15. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    16. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    17. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    19. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    20. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:369:y:2024:i:c:s0306261924009255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.