IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp363-371.html
   My bibliography  Save this article

A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles

Author

Listed:
  • Li, Zhirun
  • Xiong, Rui
  • Mu, Hao
  • He, Hongwen
  • Wang, Chun

Abstract

To improve the estimation accuracy of a battery’s inner state for a battery management system, an improved online model-based parameter identification algorithm is proposed. To reduce the computation cost, the existing methods regard the open circuit voltage over a certain time as a constant value. However, the battery state-of-charge (SoC) estimation error with the traditional method will deteriorate with larger sampling intervals. Compared with the existing parameter identification method, a new online estimation method is proposed, and both recursive least squares (RLS) and least mean square (LMS) algorithms are employed and compared systematically. The LMS algorithm, which requires less computational capability and storage space but performs worse than the RLS algorithm, is also invalid for the wide sampling interval in the traditional method. The improved method using LMS can maintain the maximum SoC estimation error at less than 10%. The simulation results show that the proposed approach can accurately identify the model parameters within 5% SoC estimation error. Finally, a hardware-in-the-loop validation experiment is carried out to prove the accuracy and superiority of the improved method.

Suggested Citation

  • Li, Zhirun & Xiong, Rui & Mu, Hao & He, Hongwen & Wang, Chun, 2017. "A novel parameter and state-of-charge determining method of lithium-ion battery for electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 363-371.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:363-371
    DOI: 10.1016/j.apenergy.2017.05.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305846
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yao & Liu, XingTao & Zhang, ChenBin & Chen, ZongHai, 2013. "A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries," Applied Energy, Elsevier, vol. 101(C), pages 808-814.
    2. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    3. Sun, Fengchun & Xiong, Rui & He, Hongwen, 2016. "A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique," Applied Energy, Elsevier, vol. 162(C), pages 1399-1409.
    4. Jingyu Yan & Guoqing Xu & Huihuan Qian & Yangsheng Xu, 2010. "Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms," Energies, MDPI, vol. 3(10), pages 1-19, September.
    5. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    6. Virulkar, Vasudeo & Aware, Mohan & Kolhe, Mohan, 2011. "Integrated battery controller for distributed energy system," Energy, Elsevier, vol. 36(5), pages 2392-2398.
    7. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    8. Truchot, Cyril & Dubarry, Matthieu & Liaw, Bor Yann, 2014. "State-of-charge estimation and uncertainty for lithium-ion battery strings," Applied Energy, Elsevier, vol. 119(C), pages 218-227.
    9. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwei Zhang & Dan Zhou & Neng Xiong & Qiao Zhu, 2021. "Non-Fragile H ∞ Nonlinear Observer for State of Charge Estimation of Lithium-Ion Battery Based on a Fractional-Order Model," Energies, MDPI, vol. 14(16), pages 1-17, August.
    2. Xiong, Rui & Tian, Jinpeng & Mu, Hao & Wang, Chun, 2017. "A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries," Applied Energy, Elsevier, vol. 207(C), pages 372-383.
    3. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).
    4. Xu, Maoshu & Zhang, E. & Wang, Sheng & Shen, Yi & Zou, Binchen & Li, Haomiao & Wan, Yiming & Wang, Kangli & Jiang, Kai, 2024. "Dynamic ultrasonic response modeling and accurate state of charge estimation for lithium ion batteries under various load profiles and temperatures," Applied Energy, Elsevier, vol. 355(C).
    5. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
    6. Tang, Aihua & Huang, Yukun & Xu, Yuchen & Hu, Yuanzhi & Yan, Fuwu & Tan, Yong & Jin, Xin & Yu, Quanqing, 2024. "Data-physics-driven estimation of battery state of charge and capacity," Energy, Elsevier, vol. 294(C).
    7. Jiang, Yihui & Xu, Jun & Liu, Mengmeng & Mei, Xuesong, 2022. "An electromechanical coupling model-based state of charge estimation method for lithium-ion pouch battery modules," Energy, Elsevier, vol. 259(C).
    8. Damoon Soudbakhsh & Mehdi Gilaki & William Lynch & Peilin Zhang & Taeyoung Choi & Elham Sahraei, 2020. "Electrical Response of Mechanically Damaged Lithium-Ion Batteries," Energies, MDPI, vol. 13(17), pages 1-15, August.
    9. Lin, Qian & Wang, Jun & Xiong, Rui & Shen, Weixiang & He, Hongwen, 2019. "Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries," Energy, Elsevier, vol. 183(C), pages 220-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ruixin & Xiong, Rui & He, Hongwen & Mu, Hao & Wang, Chun, 2017. "A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles," Applied Energy, Elsevier, vol. 207(C), pages 336-345.
    2. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    3. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    4. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    5. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    7. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    8. Xiangyu Cui & Zhu Jing & Maji Luo & Yazhou Guo & Huimin Qiao, 2018. "A New Method for State of Charge Estimation of Lithium-Ion Batteries Using Square Root Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-21, January.
    9. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-16, July.
    10. Wang, Ju & Xiong, Rui & Li, Linlin & Fang, Yu, 2018. "A comparative analysis and validation for double-filters-based state of charge estimators using battery-in-the-loop approach," Applied Energy, Elsevier, vol. 229(C), pages 648-659.
    11. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    12. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    13. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    14. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    15. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    16. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    17. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    18. Wang, Yujie & Liu, Chang & Pan, Rui & Chen, Zonghai, 2017. "Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator," Energy, Elsevier, vol. 121(C), pages 739-750.
    19. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    20. Xiaogang Wu & Wenwen Shi & Jiuyu Du, 2017. "Multi-Objective Optimal Charging Method for Lithium-Ion Batteries," Energies, MDPI, vol. 10(9), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:363-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.