IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1628-d1059789.html
   My bibliography  Save this article

Practical Evaluation of Lithium-Ion Battery State-of-Charge Estimation Using Time-Series Machine Learning for Electric Vehicles

Author

Listed:
  • Marat Sadykov

    (School of Mechanical, Medical and Process Engineering (MMPE), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
    These authors contributed equally to this work.)

  • Sam Haines

    (School of Mechanical, Medical and Process Engineering (MMPE), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia)

  • Mark Broadmeadow

    (School of Electrical Engineering & Robotics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia)

  • Geoff Walker

    (School of Electrical Engineering & Robotics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia)

  • David William Holmes

    (School of Mechanical, Medical and Process Engineering (MMPE), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
    These authors contributed equally to this work.)

Abstract

This paper presents a practical usability investigation of recurrent neural networks (RNNs) to determine the best-suited machine learning method for estimating electric vehicle (EV) batteries’ state of charge. Using models from multiple published sources and cross-validation testing with several driving scenarios to determine the state of charge of lithium-ion batteries, we assessed their accuracy and drawbacks. Five models were selected from various published state-of-charge estimation models, based on cell types with GRU or LSTM, and optimisers such as stochastic gradient descent, Adam, Nadam, AdaMax, and Robust Adam, with extensions via momentum calculus or an attention layer. Each method was examined by applying training techniques such as a learning rate scheduler or rollback recovery to speed up the fitting, highlighting the implementation specifics. All this was carried out using the TensorFlow framework, and the implementation was performed as closely to the published sources as possible on openly available battery data. The results highlighted an average percentage accuracy of 96.56% for the correct SoC estimation and several drawbacks of the overall implementation, and we propose potential solutions for further improvement. Every implemented model had a similar drawback, which was the poor capturing of the middle area of charge, applying a higher weight to the voltage than the current. The combination of these techniques into a single custom model could result in a better-suited model, further improving the accuracy.

Suggested Citation

  • Marat Sadykov & Sam Haines & Mark Broadmeadow & Geoff Walker & David William Holmes, 2023. "Practical Evaluation of Lithium-Ion Battery State-of-Charge Estimation Using Time-Series Machine Learning for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-34, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1628-:d:1059789
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingyu Yan & Guoqing Xu & Huihuan Qian & Yangsheng Xu, 2010. "Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms," Energies, MDPI, vol. 3(10), pages 1-19, September.
    2. Chaoran Li & Fei Xiao & Yaxiang Fan, 2019. "An Approach to State of Charge Estimation of Lithium-Ion Batteries Based on Recurrent Neural Networks with Gated Recurrent Unit," Energies, MDPI, vol. 12(9), pages 1-22, April.
    3. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    4. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    3. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    4. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    5. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    6. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    7. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    8. Yang, Jufeng & Huang, Wenxin & Xia, Bing & Mi, Chris, 2019. "The improved open-circuit voltage characterization test using active polarization voltage reduction method," Applied Energy, Elsevier, vol. 237(C), pages 682-694.
    9. Panagiotis Eleftheriadis & Spyridon Giazitzis & Sonia Leva & Emanuele Ogliari, 2023. "Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview," Forecasting, MDPI, vol. 5(3), pages 1-24, September.
    10. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    11. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    12. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
    13. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    14. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    15. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.
    16. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    17. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    18. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    19. Kang, LiuWang & Zhao, Xuan & Ma, Jian, 2014. "A new neural network model for the state-of-charge estimation in the battery degradation process," Applied Energy, Elsevier, vol. 121(C), pages 20-27.
    20. Cheng Li & Gi-Woo Kim, 2024. "Improved State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Parameter Estimation and Multi-Innovation Adaptive Robust Unscented Kalman Filter," Energies, MDPI, vol. 17(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1628-:d:1059789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.