IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p942-d1592371.html
   My bibliography  Save this article

Current Status and Reflections on Ocean CO 2 Sequestration: A Review

Author

Listed:
  • Shanling Zhang

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Sheng Jiang

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Hongda Li

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Peiran Li

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Xiuping Zhong

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Chen Chen

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Guigang Tu

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Xiang Liu

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

  • Zhenhua Xu

    (College of Construction Engineering, Jilin University, Changchun 130026, China
    Key Laboratory of Drilling and Exploitation Technology in Complex Conditions, Ministry of Natural Resources, Changchun 130026, China)

Abstract

Climate change has become one of the most pressing global challenges, with greenhouse gas emissions, particularly carbon dioxide (CO 2 ), being the primary drivers of global warming. To effectively address climate change, reducing carbon emissions has become an urgent task for countries worldwide. Carbon capture, utilization, and storage (CCUS) technologies are regarded as crucial measures to combat climate change, among which ocean CO 2 sequestration has emerged as a promising approach. Recent reports from the International Energy Agency (IEA) indicate that by 2060, CCUS technologies could contribute up to 14% of global cumulative carbon reductions, highlighting their significant potential in mitigating climate change. This review discusses the main technological pathways for ocean CO 2 sequestration, including oceanic water column sequestration, CO 2 oil and gas/coal seam geological sequestration, saline aquifer sequestration, and seabed methane hydrate sequestration. The current research status and challenges of these technologies are reviewed, with a particular focus on the potential of seabed methane hydrate sequestration, which offers a storage density of approximately 0.5 to 1.0 Gt per cubic kilometer of hydrate. This article delves into the formation mechanisms, stability conditions, and storage advantages of CO 2 hydrates. CO 2 sequestration via hydrates not only offers high storage density but also ensures long-term stability in the low-temperature, high-pressure conditions of the seabed, minimizing leakage risks. This makes it one of the most promising ocean CO 2 sequestration technologies. This paper also analyzes the difficulties faced by ocean CO 2 sequestration technologies, such as the kinetic limitations of hydrate formation and leakage monitoring during the sequestration process. Finally, this paper looks ahead to the future development of ocean CO 2 sequestration technologies, providing theoretical support and practical guidance for optimizing their application and promoting a low-carbon economy.

Suggested Citation

  • Shanling Zhang & Sheng Jiang & Hongda Li & Peiran Li & Xiuping Zhong & Chen Chen & Guigang Tu & Xiang Liu & Zhenhua Xu, 2025. "Current Status and Reflections on Ocean CO 2 Sequestration: A Review," Energies, MDPI, vol. 18(4), pages 1-28, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:942-:d:1592371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    2. Zheng, Junjie & Bhatnagar, Krittika & Khurana, Maninder & Zhang, Peng & Zhang, Bao-Yong & Linga, Praveen, 2018. "Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives," Applied Energy, Elsevier, vol. 217(C), pages 377-389.
    3. Nerilie J. Abram & Helen V. McGregor & Jessica E. Tierney & Michael N. Evans & Nicholas P. McKay & Darrell S. Kaufman, 2016. "Early onset of industrial-era warming across the oceans and continents," Nature, Nature, vol. 536(7617), pages 411-418, August.
    4. Chaturvedi, Krishna Raghav & Sinha, A.S.K. & Nair, Vishnu Chandrasekharan & Sharma, Tushar, 2021. "Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production," Energy, Elsevier, vol. 227(C).
    5. Guo, Yang & Li, Shuxia & Sun, Hao & Wu, Didi & Liu, Lu & Zhang, Ningtao & Qin, Xuwen & Lu, Cheng, 2024. "Enhancing gas production and CO2 sequestration from marine hydrate reservoirs through optimized CO2 hydrate cap," Energy, Elsevier, vol. 303(C).
    6. Fatima Al Hameli & Hadi Belhaj & Mohammed Al Dhuhoori, 2022. "CO 2 Sequestration Overview in Geological Formations: Trapping Mechanisms Matrix Assessment," Energies, MDPI, vol. 15(20), pages 1-23, October.
    7. Ciro Florio & Gabriella Fiorentino & Fabiana Corcelli & Sergio Ulgiati & Stefano Dumontet & Joshua Güsewell & Ludger Eltrop, 2019. "A Life Cycle Assessment of Biomethane Production from Waste Feedstock Through Different Upgrading Technologies," Energies, MDPI, vol. 12(4), pages 1-12, February.
    8. Yong Yuan & Jianqiang Wang & Jianwen Chen & Ke Cao & Jie Liang & Tianyu Lan & Dongyu Lu & Xudong Guo, 2023. "Carbon Dioxide Storage Potential of Cenozoic Saline Aquifers in the South Yellow Sea Basin," Energies, MDPI, vol. 16(4), pages 1-16, February.
    9. Li, Ze-Yu & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen & Xu, Chun-Gang & Yan, Ran, 2019. "The plateau effects and crystal transition study in Tetrahydrofuran (THF)/CO2/H2 hydrate formation processes," Applied Energy, Elsevier, vol. 238(C), pages 195-201.
    10. Tian Zhang & Wanchang Zhang & Ruizhao Yang & Huiran Gao & Dan Cao, 2022. "Analysis of Available Conditions for InSAR Surface Deformation Monitoring in CCS Projects," Energies, MDPI, vol. 15(2), pages 1-18, January.
    11. Ren, Bo & Duncan, Ian J., 2019. "Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA," Energy, Elsevier, vol. 167(C), pages 391-401.
    12. Peter Psarras & Holly Krutka & Mathilde Fajardy & Zhiqu Zhang & Simona Liguori & Niall Mac Dowell & Jennifer Wilcox, 2017. "Slicing the pie: how big could carbon dioxide removal be?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(5), September.
    13. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    14. Zhang, Shanling & Ma, Yingrui & Xu, Zhenhua & Zhang, Yongtian & Liu, Xiang & Zhong, Xiuping & Tu, Guigang & Chen, Chen, 2024. "Numerical simulation study of natural gas hydrate extraction by depressurization combined with CO2 replacement," Energy, Elsevier, vol. 303(C).
    15. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    16. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    17. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
    18. Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.
    19. Torp, Tore A & Gale, John, 2004. "Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects," Energy, Elsevier, vol. 29(9), pages 1361-1369.
    20. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Zhai, Lianghao & Li, Xitong & Tu, Guigang & Chen, Chen, 2021. "Fracture network stimulation effect on hydrate development by depressurization combined with thermal stimulation using injection-production well patterns," Energy, Elsevier, vol. 228(C).
    21. Ilyas Khurshid & Imran Afgan, 2021. "Geochemical Investigation of CO 2 Injection in Oil and Gas Reservoirs of Middle East to Estimate the Formation Damage and Related Oil Recovery," Energies, MDPI, vol. 14(22), pages 1-16, November.
    22. Chen, Bailian & Harp, Dylan R. & Lin, Youzuo & Keating, Elizabeth H. & Pawar, Rajesh J., 2018. "Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach," Applied Energy, Elsevier, vol. 225(C), pages 332-345.
    23. Paul G. Falkowski, 1997. "Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean," Nature, Nature, vol. 387(6630), pages 272-275, May.
    24. Singh, Udayan & Colosi, Lisa M., 2021. "The case for estimating carbon return on investment (CROI) for CCUS platforms," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    3. Zhiyuan Zhu & Xiaoya Zhao & Sijia Wang & Lanlan Jiang & Hongsheng Dong & Pengfei Lv, 2025. "Gas Production and Storage Using Hydrates Through the Replacement of Multicomponent Gases: A Critical Review," Energies, MDPI, vol. 18(4), pages 1-31, February.
    4. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    5. Sungil Kim & Kyungbook Lee & Minhui Lee & Taewoong Ahn, 2020. "Data-Driven Three-Phase Saturation Identification from X-ray CT Images with Critical Gas Hydrate Saturation," Energies, MDPI, vol. 13(21), pages 1-19, November.
    6. Wang, Tian & Fan, Ziyu & Sun, Lingjie & Yang, Lei & Zhao, Jiafei & Song, Yongchen & Zhang, Lunxiang, 2024. "Pore-scale behaviors of CO2 hydrate formation and dissociation in the presence of swelling clay: Implication for geologic carbon sequestration," Energy, Elsevier, vol. 308(C).
    7. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    8. Le, Quang-Du & Rodriguez, Carla T. & Legoix, Ludovic N. & Pirim, Claire & Chazallon, Bertrand, 2020. "Influence of the initial CH4-hydrate system properties on CO2 capture kinetics," Applied Energy, Elsevier, vol. 280(C).
    9. Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
    10. Kasala, Erasto E. & Wang, Jinjie & Hussain, Wakeel & Majid, Asia & Nyakilla, Edwin E., 2025. "Enhancing CO2 hydrate formation and long-term stability in subseafloor saline sediments through integrated thermal and pressure management for effective CO2 sequestration," Applied Energy, Elsevier, vol. 377(PD).
    11. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Thakre, Niraj & Jana, Amiya K., 2017. "Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation," Applied Energy, Elsevier, vol. 205(C), pages 749-760.
    13. Jemal Worku Fentaw & Hossein Emadi & Athar Hussain & Diana Maury Fernandez & Sugan Raj Thiyagarajan, 2024. "Geochemistry in Geological CO 2 Sequestration: A Comprehensive Review," Energies, MDPI, vol. 17(19), pages 1-35, October.
    14. Alirza Orujov & Kipp Coddington & Saman A. Aryana, 2023. "A Review of CCUS in the Context of Foams, Regulatory Frameworks and Monitoring," Energies, MDPI, vol. 16(7), pages 1-41, April.
    15. Niu, Mengya & Yao, Yuanxin & Zi, Mucong & Dong, Peng & Chen, Daoyi, 2024. "Clay mineral mediated dynamics of CO2 hydrate formation and dissociation: Experimental insights for carbon sequestration," Energy, Elsevier, vol. 311(C).
    16. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Lao, Junming & Xie, Zhenhuan & Du, Shuyi & Zhou, Yiyang & Song, Hongqing, 2024. "Reducing energy consumption and enhancing trapping and capacity of CO2 sequestration: The effects of pore heterogeneity and fluid properties," Energy, Elsevier, vol. 304(C).
    18. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Memory effect of gas hydrate: Influencing factors of hydrate reformation and dissociation behaviors☆," Applied Energy, Elsevier, vol. 306(PA).
    19. Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
    20. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:942-:d:1592371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.