IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024544.html
   My bibliography  Save this article

Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline

Author

Listed:
  • Chen, Lei
  • Hu, Yanwei
  • Yang, Kai
  • Yan, Xinqing
  • Yu, Shuai
  • Yu, Jianliang
  • Chen, Shaoyun

Abstract

The transportation of carbon dioxide (CO2) from the capture point to the pooling site through distribution tubes is a crucial link in the carbon capture, utilization, and storage (CCUS) chain. Existing experiments have not been conducted to study the full-scale fracture of the CO2-distributed pipelines, the pressure and temperature evolution inside the pipe during crack initiation, fracture extension, and stopping have not been revealed. The rate of fracture extension velocities has not been quantitatively described, and the crack morphology has not been analyzed. This paper conducted the first supercritical CO2 pipeline full-scale fracture experiment based on a novel experimental setup with a total length of 21.7 m and the inner diameter of 98.3 mm, 16.7 m of which is the main pipeline and 5 m is the sacrificial pipeline. After the sacrificial pipeline rupture, high-frequency transducers were used to measure the change in fluid pressure, and multilayer thermocouples monitored the temperature distribution in four cross-sections within the pipe. Moreover, the decompression wave propagation velocity of supercritical CO2 and sacrificial pipeline fracture velocity has been obtained and calculated, respectively. The microscopic morphology of the cracks obtained by scanning electron microscopy revealed the failure mechanism of the sacrificial pipeline with prefabricated defects. This work establishes a reliable experience for industry-scale CO2 pipelines and creates a pipeline design foundation for higher security transport in the future.

Suggested Citation

  • Chen, Lei & Hu, Yanwei & Yang, Kai & Yan, Xinqing & Yu, Shuai & Yu, Jianliang & Chen, Shaoyun, 2023. "Fracture process characteristic study during fracture propagation of a CO2 transport network distribution pipeline," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024544
    DOI: 10.1016/j.energy.2023.129060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dall’Acqua, D. & Terenzi, A. & Leporini, M. & D’Alessandro, V. & Giacchetta, G. & Marchetti, B., 2017. "A new tool for modelling the decompression behaviour of CO2 with impurities using the Peng-Robinson equation of state," Applied Energy, Elsevier, vol. 206(C), pages 1432-1445.
    2. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Pressure response and phase transition in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 178(C), pages 189-197.
    3. Allahyarzadeh-Bidgoli, Ali & Yanagihara, Jurandir Itizo, 2023. "Energy efficiency, sustainability, and operating cost optimization of an FPSO with CCUS: An innovation in CO2 compression and injection systems," Energy, Elsevier, vol. 267(C).
    4. Liu, Xiong & Godbole, Ajit & Lu, Cheng & Michal, Guillaume & Linton, Valerie, 2019. "Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies," Applied Energy, Elsevier, vol. 250(C), pages 32-47.
    5. Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang & Yang, Yan, 2023. "High-pressure supersonic carbon dioxide (CO2) separation benefiting carbon capture, utilisation and storage (CCUS) technology," Applied Energy, Elsevier, vol. 339(C).
    6. Elshahomi, Alhoush & Lu, Cheng & Michal, Guillaume & Liu, Xiong & Godbole, Ajit & Venton, Philip, 2015. "Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state," Applied Energy, Elsevier, vol. 140(C), pages 20-32.
    7. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    8. Singh, Udayan & Colosi, Lisa M., 2021. "The case for estimating carbon return on investment (CROI) for CCUS platforms," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shuai & Yan, Xingqing & He, Yifan & Chen, Lei & Hu, Yanwei & Yang, Kai & Cao, Zhangao & Yu, Jianliang & Chen, Shaoyun, 2024. "Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: Experiments and mechanism analysis," Energy, Elsevier, vol. 296(C).
    2. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    3. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.
    4. Zhou, Yuan & Huang, Yanping & Tian, Gengyuan & Yuan, Yuan & Zeng, Chengtian & Huang, Jiajian & Tang, Longchang, 2022. "Classification and characteristics of supercritical carbon dioxide leakage from a vessel," Energy, Elsevier, vol. 258(C).
    5. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Proust, Christophe, 2016. "Under-expanded jets and dispersion in supercritical CO2 releases from a large-scale pipeline," Applied Energy, Elsevier, vol. 183(C), pages 1279-1291.
    6. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    7. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    8. Kajetan Sadowski, 2022. "Comparison of the Carbon Payback Period (CPP) of Different Variants of Insulation Materials and Existing External Walls in Selected European Countries," Energies, MDPI, vol. 16(1), pages 1-30, December.
    9. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    10. Qin, Xiang & Shen, Aoqi & Duan, Hongxin & Wang, Guanghui & Chen, Jiaheng & Tang, Songzhen & Wang, Dingbiao, 2024. "Experimental verification of the novel transcritical CO2 heat pump system and model evaluation method," Renewable Energy, Elsevier, vol. 222(C).
    11. Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
    12. Tuğçe Demirdelen & İnayet Özge Aksu & Kübra Yilmaz & Duygu Durdu Koç & Miray Arikan & Arif Şener, 2023. "Investigation of the Carbon Footprint of the Textile Industry: PES- and PP-Based Products with Monte Carlo Uncertainty Analysis," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    13. Krystian Czernek & Stanisław Witczak, 2020. "Precise Determination of Liquid Layer Thickness with Downward Annular Two-Phase Gas-Very Viscous Liquid Flow," Energies, MDPI, vol. 13(24), pages 1-17, December.
    14. Zhang, Guojie & Yang, Yifan & Chen, Jiaheng & Jin, Zunlong & Dykas, Sławomir, 2024. "Numerical study of heterogeneous condensation in the de Laval nozzle to guide the compressor performance optimization in a compressed air energy storage system," Applied Energy, Elsevier, vol. 356(C).
    15. Zhang, Guojie & Wang, Xiaogang & Chen, Jiaheng & Tang, Songzhen & Smołka, Krystian & Majkut, Mirosław & Jin, Zunlong & Dykas, Sławomir, 2023. "Supersonic nozzle performance prediction considering the homogeneous-heterogeneous coupling spontaneous non-equilibrium condensation," Energy, Elsevier, vol. 284(C).
    16. Munkejord, Svend Tollak & Austegard, Anders & Deng, Han & Hammer, Morten & Stang, H.G. Jacob & Løvseth, Sigurd W., 2020. "Depressurization of CO2 in a pipe: High-resolution pressure and temperature data and comparison with model predictions," Energy, Elsevier, vol. 211(C).
    17. Qiang Liu & Jialong Li & Bing Liang & Weiji Sun & Jianjun Liu & Yun Lei, 2023. "Microscopic Flow of CO 2 in Complex Pore Structures: A Recent 10-Year Review," Sustainability, MDPI, vol. 15(17), pages 1-21, August.
    18. Zhang, Guojie & Li, Yunpeng & Jin, Zunlong & Dykas, Sławomir & Cai, Xiaoshu, 2024. "A novel carbon dioxide capture technology (CCT) based on non-equilibrium condensation characteristics: Numerical modelling, nozzle design and structure optimization," Energy, Elsevier, vol. 286(C).
    19. Shi, Jihao & Li, Junjie & Usmani, Asif Sohail & Zhu, Yuan & Chen, Guoming & Yang, Dongdong, 2021. "Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach," Energy, Elsevier, vol. 219(C).
    20. Leporini, Mariella & Marchetti, Barbara & Corvaro, Francesco & Polonara, Fabio, 2019. "Reconversion of offshore oil and gas platforms into renewable energy sites production: Assessment of different scenarios," Renewable Energy, Elsevier, vol. 135(C), pages 1121-1132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.