IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v303y2024ics0360544224017717.html
   My bibliography  Save this article

Numerical simulation study of natural gas hydrate extraction by depressurization combined with CO2 replacement

Author

Listed:
  • Zhang, Shanling
  • Ma, Yingrui
  • Xu, Zhenhua
  • Zhang, Yongtian
  • Liu, Xiang
  • Zhong, Xiuping
  • Tu, Guigang
  • Chen, Chen

Abstract

Utilizing depressurization combined with CO2 replacement for extracting natural gas hydrates (NGHs) is vital for sustainable energy and carbon sequestration. In this study, a NGH reservoir numerical model was developed to investigate the impacts of depressurization combined with CO2 replacement on hydrate extraction at a field scale. Findings reveal an increase in methane production with reduced bottom hole pressure. When the bottom hole pressure is 3.5 MPa, the methane production reaches its maximum at 1.71 × 106 m3. Methane hydrates near production and injection wells decompose first, with deeper hydrates decomposing more easily. Higher differential pressures between injection and production enhance methane extraction and CO2 hydrate formation. However, excessive pressure differential (1.5 MPa) can lead to CO2 breakthrough across reservoir barriers, adversely affecting the purity of methane. At 1800 d, the methane purity is only 36.2 %. Optimal methane extraction and CO2 sequestration occur at higher injection temperatures (9 °C) below the CO2 hydrate phase equilibrium temperature. Temperatures above this equilibrium adversely affect both processes. The study validates the feasibility of depressurization with CO2 replacement for extracting hydrates in the Shenhu area, offering theoretical guidance for synergistic offshore methane extraction and CO2 sequestration techniques.

Suggested Citation

  • Zhang, Shanling & Ma, Yingrui & Xu, Zhenhua & Zhang, Yongtian & Liu, Xiang & Zhong, Xiuping & Tu, Guigang & Chen, Chen, 2024. "Numerical simulation study of natural gas hydrate extraction by depressurization combined with CO2 replacement," Energy, Elsevier, vol. 303(C).
  • Handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017717
    DOI: 10.1016/j.energy.2024.131998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224017717
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jing-Chun & Li, Bo & Li, Xiao-Sen & Wang, Yi, 2021. "Effects of depressurizing rate on methane hydrate dissociation within large-scale experimental simulator," Applied Energy, Elsevier, vol. 304(C).
    2. Hailong Lu & Yu-taek Seo & Jong-won Lee & Igor Moudrakovski & John A. Ripmeester & N. Ross Chapman & Richard B. Coffin & Graeme Gardner & John Pohlman, 2007. "Complex gas hydrate from the Cascadia margin," Nature, Nature, vol. 445(7125), pages 303-306, January.
    3. Choi, Wonjung & Mok, Junghoon & Lee, Jonghyuk & Lee, Yohan & Lee, Jaehyoung & Sum, Amadeu K. & Seo, Yongwon, 2022. "Effective CH4 production and novel CO2 storage through depressurization-assisted replacement in natural gas hydrate-bearing sediment," Applied Energy, Elsevier, vol. 326(C).
    4. Ya-Long Ding & Hua-Qin Wang & Chun-Gang Xu & Xiao-Sen Li, 2020. "The Effect of CO 2 Partial Pressure on CH 4 Recovery in CH 4 -CO 2 Swap with Simulated IGCC Syngas," Energies, MDPI, vol. 13(5), pages 1-11, February.
    5. Mirian E. Casco & Joaquín Silvestre-Albero & Anibal J. Ramírez-Cuesta & Fernando Rey & Jose L. Jordá & Atul Bansode & Atsushi Urakawa & Inma Peral & Manuel Martínez-Escandell & Katsumi Kaneko & Franci, 2015. "Methane hydrate formation in confined nanospace can surpass nature," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    6. Lee, Yohan & Deusner, Christian & Kossel, Elke & Choi, Wonjung & Seo, Yongwon & Haeckel, Matthias, 2020. "Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment," Applied Energy, Elsevier, vol. 277(C).
    7. Klaus Wallmann & M. Riedel & W. L. Hong & H. Patton & A. Hubbard & T. Pape & C. W. Hsu & C. Schmidt & J. E. Johnson & M. E. Torres & K. Andreassen & C. Berndt & G. Bohrmann, 2018. "Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    8. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    9. Liu, Yongge & Li, Guo & Chen, Jing & Bai, Yajie & Hou, Jian & Xu, Hongzhi & Zhao, Ermeng & Chen, Zhangxin & He, Jiayuan & Zhang, Le & Cen, Xueqi & Chuvilin, Evgeny, 2023. "Numerical simulation of hydraulic fracturing-assisted depressurization development in hydrate bearing layers based on discrete fracture models," Energy, Elsevier, vol. 263(PE).
    10. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    11. Terzariol, M. & Santamarina, J.C., 2021. "Multi-well strategy for gas production by depressurization from methane hydrate-bearing sediments," Energy, Elsevier, vol. 220(C).
    12. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    13. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    14. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Q. & Pandey, J.S. & Xu, Y. & von Solms, N., 2024. "Fundamental insights into multistep depressurization of CH4/CO2 hydrates in the presence of N2 or air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    2. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    3. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    4. Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
    5. Jung-Tae Kim & Ah-Ram Kim & Gye-Chun Cho & Chul-Whan Kang & Joo Yong Lee, 2019. "The Effects of Coupling Stiffness and Slippage of Interface Between the Wellbore and Unconsolidated Sediment on the Stability Analysis of the Wellbore Under Gas Hydrate Production," Energies, MDPI, vol. 12(21), pages 1-23, November.
    6. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    7. Mok, Junghoon & Choi, Wonjung & Lee, Jonghyuk & Seo, Yongwon, 2022. "Effects of pressure and temperature conditions on thermodynamic and kinetic guest exchange behaviors of CH4 − CO2 + N2 replacement for energy recovery and greenhouse gas storage," Energy, Elsevier, vol. 239(PB).
    8. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    9. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    10. Zhang, Xuemin & Zhang, Shanling & Yuan, Qing & Liu, Qingqing & Huang, Tingting & Li, Jinping & Wu, Qingbai & Zhang, Peng, 2024. "Gas production from hydrates by CH4-CO2 replacement: Effect of N2 and intermittent heating," Energy, Elsevier, vol. 288(C).
    11. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    12. Choi, Wonjung & Mok, Junghoon & Lee, Yohan & Lee, Jaehyoung & Seo, Yongwon, 2021. "Optimal driving force for the dissociation of CH4 hydrates in hydrate-bearing sediments using depressurization," Energy, Elsevier, vol. 223(C).
    13. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    14. Xu, Jiuping & Tang, Min & Liu, Tingting & Fan, Lurong, 2024. "Technological paradigm-based development strategy towards natural gas hydrate technology," Energy, Elsevier, vol. 289(C).
    15. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    16. Zhao, Yingjie & Hu, Wei & Dou, Xiaofeng & Liu, Zhichao & Ning, Fulong, 2024. "Experimental investigation on the geological responses and production behaviors of natural gas hydrate-bearing sediments under various hydrate saturations and depressurization strategies," Applied Energy, Elsevier, vol. 374(C).
    17. Guo, Yang & Li, Shuxia & Qin, Xuwen & Lu, Cheng & Wu, Didi & Liu, Lu & Zhang, Ningtao, 2023. "Enhanced gas production from low-permeability hydrate reservoirs based on embedded discrete fracture models: Influence of branch parameters," Energy, Elsevier, vol. 282(C).
    18. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    19. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    20. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:303:y:2024:i:c:s0360544224017717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.