IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223032309.html
   My bibliography  Save this article

Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point

Author

Listed:
  • Zhang, Xuemin
  • Zhang, Shanling
  • Liu, Qingqing
  • Huang, Tingting
  • Yang, Huijie
  • Li, Jinping
  • Wang, Yingmei
  • Wu, Qingbai
  • Chen, Chen

Abstract

Natural gas hydrate (NGH) is one of the most promising clean energy sources in the future because of its huge reserves and cleanliness, and the CO2 replacement method can realize the safe extraction of NGH and the underground storage of greenhouse gases. This study investigates the influence of quartz sand size and ice content on hydrate replacement characteristics below freezing point conditions. Results indicate that, at a temperature of 271.65 K, when particle sizes range from 250 μm to 500 μm, there is an observed increase in CH4 recovery alongside a concurrent decrease in CO2 sequestration as particle size decreases. Additionally, when maintaining a fixed 500 μm particle size, the proportion of quartz sand positively correlates with CH4 recovery. Furthermore, the presence of quartz sand grains in an ice powder system can improve the replacement effect. By contrast, the presence of quartz sand significantly enhances the CO2 sequestration ratio more than the CH4 recovery ratio. In mixed ice-sand porous media, CO2 sequestration can be enhanced from 0.0496 mol to 0.1012 mol, representing a 104 % increase in CO2 sequestration molarity when compared to the pure ice conditions.

Suggested Citation

  • Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032309
    DOI: 10.1016/j.energy.2023.129836
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223032309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    2. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).
    3. Gu, Yuhang & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Cao, Xinxin & Liu, Tianle & Qin, Shunbo & Zhang, Ling & Jiang, Guosheng, 2023. "Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing," Energy, Elsevier, vol. 262(PB).
    4. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    5. Lee, Yohan & Deusner, Christian & Kossel, Elke & Choi, Wonjung & Seo, Yongwon & Haeckel, Matthias, 2020. "Influence of CH4 hydrate exploitation using depressurization and replacement methods on mechanical strength of hydrate-bearing sediment," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    2. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    3. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    4. Du, Hua & Chen, Huie & Kong, Fansheng & Luo, Yonggui, 2023. "Failure mode and the mechanism of methane hydrate-bearing clayey sand sediments under depressurization," Energy, Elsevier, vol. 279(C).
    5. Zhang, Zhengcai & Kusalik, Peter G. & Liu, Changling & Wu, Nengyou, 2023. "Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity," Energy, Elsevier, vol. 285(C).
    6. Zhang, Xuemin & Zhang, Shanling & Yuan, Qing & Liu, Qingqing & Huang, Tingting & Li, Jinping & Wu, Qingbai & Zhang, Peng, 2024. "Gas production from hydrates by CH4-CO2 replacement: Effect of N2 and intermittent heating," Energy, Elsevier, vol. 288(C).
    7. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    8. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).
    9. Choi, Wonjung & Mok, Junghoon & Lee, Yohan & Lee, Jaehyoung & Seo, Yongwon, 2021. "Optimal driving force for the dissociation of CH4 hydrates in hydrate-bearing sediments using depressurization," Energy, Elsevier, vol. 223(C).
    10. Zhang, Ningtao & Li, Shuxia & Chen, Litao & Guo, Yang & Liu, Lu, 2024. "Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments," Energy, Elsevier, vol. 290(C).
    11. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    12. Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Gu, Yuhang & Li, Yanlong & Cao, Xinxin & Mao, Peixiao & Liu, Tianle & Qin, Shunbo & Jiang, Guosheng, 2023. "Gas recovery from silty hydrate reservoirs by using vertical and horizontal well patterns in the South China Sea: Effect of well spacing and its optimization," Energy, Elsevier, vol. 275(C).
    13. Qin, Shunbo & Sun, Jiaxin & Liu, Tianle & Tang, Chengxiang & Lei, Gang & Dou, Xiaofeng & Gu, Yuhang, 2024. "Sand control during gas production from marine hydrate reservoirs by using microbial-induced carbonate precipitation technology: A feasibility study," Energy, Elsevier, vol. 299(C).
    14. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    15. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    16. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    17. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    18. Nicola Varini & Niall J. English & Christian R. Trott, 2012. "Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms," Energies, MDPI, vol. 5(9), pages 1-8, September.
    19. Zhong, Jin-Rong & Sun, Yi-Fei & Li, Wen-Zhi & Xie, Yan & Chen, Guang-Jin & Sun, Chang-Yu & Yang, Lan-Ying & Qin, Hui-Bo & Pang, Wei-Xin & Li, Qing-Ping, 2019. "Structural transition range of methane-ethane gas hydrates during decomposition below ice point," Applied Energy, Elsevier, vol. 250(C), pages 873-881.
    20. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.