IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipds0306261924020634.html
   My bibliography  Save this article

Enhancing CO2 hydrate formation and long-term stability in subseafloor saline sediments through integrated thermal and pressure management for effective CO2 sequestration

Author

Listed:
  • Kasala, Erasto E.
  • Wang, Jinjie
  • Hussain, Wakeel
  • Majid, Asia
  • Nyakilla, Edwin E.

Abstract

This review examines recent advancements in thermal and pressure management strategies for optimizing CO₂ hydrate formation and stability in subseafloor saline sediments, focusing on their application in carbon capture and storage (CCS). The research synthesizes findings from various studies, exploring how temperature and pressure manipulation, coupled with chemical additives, enhance CO₂ hydrate kinetics, stability, and sequestration efficiency. Novel approaches, such as electrical heating systems and pressure cycling, are discussed for their role in promoting hydrate formation. Challenges, including sediment heterogeneity, salinity variations, and environmental impacts, are critically analyzed. The review concludes by identifying research gaps and suggesting innovative methodologies to improve hydrate-based CCS efficiency. This work provides a comprehensive understanding of the current state and future direction of CO₂ hydrate research, contributing to advancing environmentally sustainable energy practices.

Suggested Citation

  • Kasala, Erasto E. & Wang, Jinjie & Hussain, Wakeel & Majid, Asia & Nyakilla, Edwin E., 2025. "Enhancing CO2 hydrate formation and long-term stability in subseafloor saline sediments through integrated thermal and pressure management for effective CO2 sequestration," Applied Energy, Elsevier, vol. 377(PD).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020634
    DOI: 10.1016/j.apenergy.2024.124680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pd:s0306261924020634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.