IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v6y2017i5ne253.html
   My bibliography  Save this article

Slicing the pie: how big could carbon dioxide removal be?

Author

Listed:
  • Peter Psarras
  • Holly Krutka
  • Mathilde Fajardy
  • Zhiqu Zhang
  • Simona Liguori
  • Niall Mac Dowell
  • Jennifer Wilcox

Abstract

The current global dependence on fossil fuels to meet energy needs continues to increase. If a 2°C warming by 2100 is to be prevented, it will become important to adopt strategies that not only avoid CO2 emissions but also allow for the direct removal of CO2 from the atmosphere, enabling the intervention of climate change. The primary direct removal methods discussed in this review include land management and mineral carbonation in addition to bioenergy and direct air capture with carbon capture and reliable storage. These methods are discussed in detail, and their potential for CO2 removal is assessed. The global upper bound for annual CO2 removal was estimated to be 12, 10, 6, and 5 GtCO2/year for bioenergy with carbon capture and reliable storage (BECCS), direct air capture with reliable storage (DACS), land management, and mineral carbonation, respectively—giving a cumulative value of ~35 GtCO2/year. However, in the case of DACS, global data on the overlap of low‐emission energy sources and reliable CO2 storage opportunities—set as a qualification for DAC viability—were unavailable, and the potential upper bound estimate is thus considered conservative. The upper bounds on the costs associated with the direct CO2 removal methods varied from approximately $100/tCO2 (land management, BECCS, and mineral carbonation) to $1000/tCO2 for DACS (again, these are the upper bounds for costs). In this review, these direct CO2 removal technologies are found to be technically viable and are potentially important options in preventing 2°C warming by 2100. WIREs Energy Environ 2017, 6:e253. doi: 10.1002/wene.253 This article is categorized under: Bioenergy > Climate and Environment Energy and Climate > Climate and Environment Energy and Development > Climate and Environment

Suggested Citation

  • Peter Psarras & Holly Krutka & Mathilde Fajardy & Zhiqu Zhang & Simona Liguori & Niall Mac Dowell & Jennifer Wilcox, 2017. "Slicing the pie: how big could carbon dioxide removal be?," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(5), September.
  • Handle: RePEc:bla:wireae:v:6:y:2017:i:5:n:e253
    DOI: 10.1002/wene.253
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.253
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashwin K Seshadri, 2018. "Economics of carbon-dioxide abatement under an exogenous constraint on cumulative emissions," Papers 1808.08717, arXiv.org, revised Jun 2020.
    2. Ünal, Emre & Keeley, Alexander Ryota & Köse, Nezir & Chapman, Andrew & Managi, Shunsuke, 2024. "The nexus between direct air capture technology and CO2 emissions in the transport sector," Applied Energy, Elsevier, vol. 363(C).
    3. Jennifer Morris & Angelo Gurgel & Bryan K. Mignone & Haroon Kheshgi & Sergey Paltsev, 2024. "Mutual reinforcement of land-based carbon dioxide removal and international emissions trading in deep decarbonization scenarios," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:6:y:2017:i:5:n:e253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.