Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.08.083
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
- Yang, She Hern Bryan & Babu, Ponnivalavan & Chua, Sam Fu Sheng & Linga, Praveen, 2016. "Carbon dioxide hydrate kinetics in porous media with and without salts," Applied Energy, Elsevier, vol. 162(C), pages 1131-1140.
- Yang, Mingjun & Song, Yongchen & Jiang, Lanlan & Liu, Weiguo & Dou, Binlin & Jing, Wen, 2014. "Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media," Applied Energy, Elsevier, vol. 135(C), pages 504-511.
- Wang, Xiao-Hui & Sun, Yi-Fei & Wang, Yun-Fei & Li, Nan & Sun, Chang-Yu & Chen, Guang-Jin & Liu, Bei & Yang, Lan-Ying, 2017. "Gas production from hydrates by CH4-CO2/H2 replacement," Applied Energy, Elsevier, vol. 188(C), pages 305-314.
- Vedachalam, N. & Ramesh, S. & Srinivasalu, S. & Rajendran, G. & Ramadass, G.A. & Atmanand, M.A., 2016. "Assessment of methane gas production from Indian gas hydrate petroleum systems," Applied Energy, Elsevier, vol. 168(C), pages 649-660.
- E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
- Lee, Yohan & Kim, Yunju & Lee, Jaehyoung & Lee, Huen & Seo, Yongwon, 2015. "CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter," Applied Energy, Elsevier, vol. 150(C), pages 120-127.
- Zhong, Dong-Liang & Ding, Kun & Lu, Yi-Yu & Yan, Jin & Zhao, Wei-Long, 2016. "Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions," Applied Energy, Elsevier, vol. 162(C), pages 1619-1626.
- Li, Xiao-Sen & Xu, Chun-Gang & Zhang, Yu & Ruan, Xu-Ke & Li, Gang & Wang, Yi, 2016. "Investigation into gas production from natural gas hydrate: A review," Applied Energy, Elsevier, vol. 172(C), pages 286-322.
- Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chaturvedi, Krishna Raghav & Sinha, A.S.K. & Nair, Vishnu Chandrasekharan & Sharma, Tushar, 2021. "Enhanced carbon dioxide sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir: Possibility of natural gas production," Energy, Elsevier, vol. 227(C).
- Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
- Tian, Hailong & Yu, Ceting & Xu, Tianfu & Liu, Changling & Jia, Wei & Li, Yuanping & Shang, Songhua, 2020. "Combining reactive transport modeling with geochemical observations to estimate the natural gas hydrate accumulation," Applied Energy, Elsevier, vol. 275(C).
- Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
- Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
- Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
- Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
- Zheng, Junjie & Zhang, Peng & Linga, Praveen, 2017. "Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures," Applied Energy, Elsevier, vol. 194(C), pages 267-278.
- Sun, Yi-Fei & Zhong, Jin-Rong & Li, Rui & Zhu, Tao & Cao, Xin-Yi & Chen, Guang-Jin & Wang, Xiao-Hui & Yang, Lan-Ying & Sun, Chang-Yu, 2018. "Natural gas hydrate exploitation by CO2/H2 continuous Injection-Production mode," Applied Energy, Elsevier, vol. 226(C), pages 10-21.
- Wang, Xiaolin & Zhang, Fengyuan & LipiĆski, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
- Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
- Wan, Kun & Wang, Yi & Li, Xiao-Sen & Zhang, Long-Hai & Meng, Te, 2024. "Pilot-scale experimental study on natural gas hydrate decomposition with innovation depressurization modes," Applied Energy, Elsevier, vol. 373(C).
- Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
- Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
- Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
- Sun, You-Hong & Zhang, Guo-Biao & Carroll, John J. & Li, Sheng-Li & Jiang, Shu-Hui & Guo, Wei, 2018. "Experimental investigation into gas recovery from CH4-C2H6-C3H8 hydrates by CO2 replacement," Applied Energy, Elsevier, vol. 229(C), pages 625-636.
- Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
- Wang, Bin & Fan, Zhen & Wang, Pengfei & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Analysis of depressurization mode on gas recovery from methane hydrate deposits and the concomitant ice generation," Applied Energy, Elsevier, vol. 227(C), pages 624-633.
- Ouyang, Q. & Pandey, J.S. & Xu, Y. & von Solms, N., 2024. "Fundamental insights into multistep depressurization of CH4/CO2 hydrates in the presence of N2 or air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
- Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
- Chen, Xuyue & Yang, Jin & Gao, Deli & Hong, Yuqun & Zou, Yiqi & Du, Xu, 2020. "Unlocking the deepwater natural gas hydrate's commercial potential with extended reach wells from shallow water: Review and an innovative method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
More about this item
Keywords
Phase equilibrium modeling; Patel-Teja and Peng-Robinson EoS; Modified Wong-Sandler mixing rule; Natural gas hydrates; Thermodynamic promoter; Experimental validation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:205:y:2017:i:c:p:749-760. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.