IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012606.html
   My bibliography  Save this article

Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage

Author

Listed:
  • Zhao, Guojun
  • Zheng, Jia-nan
  • Gong, Guangjun
  • Chen, Bingbing
  • Yang, Mingjun
  • Song, Yongchen

Abstract

Geological sequestration of carbon dioxide (CO2) has been considered one of the most effective strategies against global warming. The greatest concern on the stored CO2 in sub-seabed sediments is leakage risk and can be solved by the plugging effect of CO2 hydrate cap, which is derived from the capillary force change by hydrate crystal formation inside pores. This study experimentally simulated CO2 upward leakage process in water-containing sediments and investigated the plugging characteristics of formed hydrate cap via magnetic resonance imaging (MRI) and flow characteristic analysis. Different CO2 flow rates (0.3–4.0 ml/min) and initial pressures (1.8–3.0 MPa) were employed for experimental conditions, and the hydrate cap appeared with no CO2 efflux any longer after hydrate formation for several minutes. It is found that both slow flow of CO2 and high pressure are beneficial for the formation of hydrate cap, and the strength of hydrate caps formed in all cases is confirmed by 10.0 MPa pressure test without any CO2 leakage. In addition, the spatial water distribution and the hydrate cap location inside the sediments are analyzed by multi-level MRI images and pressure evolution calculation, respectively. Ultimately, this study conducted a CO2-water flow case and found that the strength of hydrate cap increases with the continuous formation of hydrates. Approximately 27.8% of hydrate saturation is a watershed of the plugging strength of CO2 hydrate cap. This study provides experimental evidences for the plugging effect of hydrate cap on terminating CO2 leakage and is of great significance for the scheme design and risk assessment of CO2 geological sequestration.

Suggested Citation

  • Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012606
    DOI: 10.1016/j.apenergy.2023.121896
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Junjie & Loganathan, Niranjan Kumar & Zhao, Jianzhong & Linga, Praveen, 2019. "Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas," Applied Energy, Elsevier, vol. 249(C), pages 190-203.
    2. Ren, Junjie & Zeng, Siyu & Chen, Daoyi & Yang, Mingjun & Linga, Praveen & Yin, Zhenyuan, 2023. "Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration1," Applied Energy, Elsevier, vol. 340(C).
    3. Sun, Zhen-Feng & Li, Nan & Jia, Shuai & Cui, Jin-Long & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap," Applied Energy, Elsevier, vol. 240(C), pages 842-850.
    4. Chai, Rukuan & Liu, Yuetian & Wang, Jingru & Liu, Qianjun & Rui, Zhenhua, 2022. "CO2 utilization and sequestration in Reservoir: Effects and mechanisms of CO2 electrochemical reduction," Applied Energy, Elsevier, vol. 323(C).
    5. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    6. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    7. Aminu, Mohammed D. & Nabavi, Seyed Ali & Rochelle, Christopher A. & Manovic, Vasilije, 2017. "A review of developments in carbon dioxide storage," Applied Energy, Elsevier, vol. 208(C), pages 1389-1419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Shihui & Tian, Xiao & Liu, Zaixing & Wu, Zhaoran & Li, Guijing & Guan, Xuemei & Zheng, Jia-nan & Yang, Mingjun, 2024. "Formation and decomposition characteristics of CO2+TBAB hydrate for a safer CO2 storage," Energy, Elsevier, vol. 307(C).
    2. Weixin Pang & Yang Ge & Mingqiang Chen & Xiaohan Zhang & Huiyun Wen & Qiang Fu & Xin Lei & Qingping Li & Shouwei Zhou, 2024. "Large-Scale Experimental Investigation of Hydrate-Based Carbon Dioxide Sequestration," Energies, MDPI, vol. 17(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    3. Li, Bing & Sun, Youhong & Jiang, Shuhui & Shen, Yifeng & Qi, Yun & Zhang, Guobiao, 2024. "Investigating CO2–N2 phase behavior for enhanced hydrate-based CO2 sequestration," Energy, Elsevier, vol. 289(C).
    4. Ma, Shihui & Tian, Xiao & Liu, Zaixing & Wu, Zhaoran & Li, Guijing & Guan, Xuemei & Zheng, Jia-nan & Yang, Mingjun, 2024. "Formation and decomposition characteristics of CO2+TBAB hydrate for a safer CO2 storage," Energy, Elsevier, vol. 307(C).
    5. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    6. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    7. Leng Tian & Xiaolong Chai & Lei Zhang & Wenbo Zhang & Yuan Zhu & Jiaxin Wang & Jianguo Wang, 2024. "Study on Compatibility Evaluation of Multilayer Co-Production to Enhance Recovery of Water Flooding in Oil Reservoir," Energies, MDPI, vol. 17(15), pages 1-13, July.
    8. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    9. Wang, Xiaochu & Sun, Youhong & Li, Bing & Zhang, Guobiao & Guo, Wei & Li, Shengli & Jiang, Shuhui & Peng, Saiyu & Chen, Hangkai, 2023. "Reservoir stimulation of marine natural gas hydrate-a review," Energy, Elsevier, vol. 263(PE).
    10. Nassabeh, Mehdi & You, Zhenjiang & Keshavarz, Alireza & Iglauer, Stefan, 2024. "Sub-surface geospatial intelligence in carbon capture, utilization and storage: A machine learning approach for offshore storage site selection," Energy, Elsevier, vol. 305(C).
    11. Li, Shaohua & Wang, Xin & Wang, Sijia & Zhang, Yi & Chen, Cong & Jiang, Lanlan & Wang, Lei & Liang, Fei & Sun, Hongjun & Song, Yongchen, 2024. "Optimizing oil recovery with CO2 microbubbles: A study of gas composition," Energy, Elsevier, vol. 302(C).
    12. Barbara Uliasz-Misiak & Jacek Misiak, 2024. "Underground Gas Storage in Saline Aquifers: Geological Aspects," Energies, MDPI, vol. 17(7), pages 1-23, March.
    13. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Zeng, Siyu & Yin, Zhenyuan & Ren, Junjie & Bhawangirkar, Dnyaneshwar R. & Huang, Li & Linga, Praveen, 2024. "Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: A thermodynamic and kinetic investigation with morphology insights," Energy, Elsevier, vol. 286(C).
    15. Ouyang, Qian & Zheng, Junjie & Pandey, Jyoti Shanker & von Solms, Nicolas & Linga, Praveen, 2024. "Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sediment," Applied Energy, Elsevier, vol. 366(C).
    16. Gajanan, K. & Ranjith, P.G. & Yang, S.Q. & Xu, T., 2024. "Advances in research and developments on natural gas hydrate extraction with gas exchange," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    17. Ren, Liang-Liang & Jiang, Min & Wang, Ling-Ban & Zhu, Yi-Jian & Li, Zhi & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Gas hydrate exploitation and carbon dioxide sequestration under maintaining the stiffness of hydrate-bearing sediments," Energy, Elsevier, vol. 194(C).
    18. Dong, Shuang & Yang, Mingjun & Zhang, Lei & Zheng, Jia-nan & Song, Yongchen, 2023. "Methane hydrate exploitation characteristics and thermodynamic non-equilibrium mechanisms by long depressurization method," Energy, Elsevier, vol. 280(C).
    19. Feng, Yu & Han, Yuze & Gao, Peng & Kuang, Yangmin & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2024. "Study of hydrate nucleation and growth aided by micro-nanobubbles: Probing the hydrate memory effect," Energy, Elsevier, vol. 290(C).
    20. Li, Shuxia & Wu, Didi & Wang, Xiaopu & Hao, Yongmao, 2021. "Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.