IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6285-d1542799.html
   My bibliography  Save this article

Prioritizing Research for Enhancing the Technology Readiness Level of Wind Turbine Blade Leading-Edge Erosion Solutions

Author

Listed:
  • Sara C. Pryor

    (Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA)

  • Rebecca J. Barthelmie

    (Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA)

  • Jacob J. Coburn

    (Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA)

  • Xin Zhou

    (Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA)

  • Marianne Rodgers

    (Wind Energy Institute of Canada, Tignish, PE C0B 2B0, Canada)

  • Heather Norton

    (Wind Energy Institute of Canada, Tignish, PE C0B 2B0, Canada)

  • M. Sergio Campobasso

    (School of Engineering, University of Lancaster, Lancaster LA1 4YW, UK)

  • Beatriz Méndez López

    (National Renewable Energy Center (CENER), 31621 Sarriguren, Spain)

  • Charlotte Bay Hasager

    (Department of Wind and Energy Systems, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Leon Mishnaevsky

    (Department of Wind and Energy Systems, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

An enhanced understanding of the mechanisms responsible for wind turbine blade leading-edge erosion (LEE) and advancing technology readiness level (TRL) solutions for monitoring its environmental drivers, reducing LEE, detecting LEE evolution, and mitigating its impact on power production are a high priority for all wind farm owners/operators and wind turbine manufacturers. Identifying and implementing solutions has the potential to continue historical trends toward lower Levelized Cost of Energy (LCoE) from wind turbines by reducing both energy yield losses and operations and maintenance costs associated with LEE. Here, we present results from the first Phenomena Identification and Ranking Tables (PIRT) assessment for wind turbine blade LEE. We document the LEE-relevant phenomena/processes that are deemed by this expert judgment assessment tool to be the highest priorities for research investment within four themes: atmospheric drivers, damage detection and quantification, material response, and aerodynamic implications. The highest priority issues, in terms of importance to LEE but where expert judgment indicates that there is a lack of fundamental knowledge, and/or implementation in measurement, and modeling is incomplete include the accurate quantification of hydrometeor size distribution (HSD) and phase, the translation of water impingement to material loss/stress, the representation of operating conditions within rain erosion testers, the quantification of damage and surface roughness progression through time, and the aerodynamic losses as a function of damage morphology. We discuss and summarize examples of research endeavors that are currently being undertaken and/or could be initiated to reduce uncertainty in the identified high-priority research areas and thus enhance the TRLs of solutions to mitigate/reduce LEE.

Suggested Citation

  • Sara C. Pryor & Rebecca J. Barthelmie & Jacob J. Coburn & Xin Zhou & Marianne Rodgers & Heather Norton & M. Sergio Campobasso & Beatriz Méndez López & Charlotte Bay Hasager & Leon Mishnaevsky, 2024. "Prioritizing Research for Enhancing the Technology Readiness Level of Wind Turbine Blade Leading-Edge Erosion Solutions," Energies, MDPI, vol. 17(24), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6285-:d:1542799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6285/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6285/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amirat, Y. & Benbouzid, M.E.H. & Al-Ahmar, E. & Bensaker, B. & Turri, S., 2009. "A brief status on condition monitoring and fault diagnosis in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2629-2636, December.
    2. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    3. Ansari, Quaiyum M. & Sánchez, Fernando & Mishnaevsky, Leon & Young, Trevor M., 2024. "Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion," Renewable Energy, Elsevier, vol. 226(C).
    4. Reichert, P. & White, G. & Bayarri, M.J. & Pitman, E.B., 2011. "Mechanism-based emulation of dynamic simulation models: Concept and application in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1638-1655, April.
    5. Fred Letson & Sara C. Pryor, 2023. "From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion," Energies, MDPI, vol. 16(9), pages 1-29, May.
    6. Bech, Jakob Ilsted & Johansen, Nicolai Frost-Jensen & Madsen, Martin Bonde & Hannesdóttir, Ásta & Hasager, Charlotte Bay, 2022. "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades," Renewable Energy, Elsevier, vol. 197(C), pages 776-789.
    7. Slot, H.M. & Gelinck, E.R.M. & Rentrop, C. & van der Heide, E., 2015. "Leading edge erosion of coated wind turbine blades: Review of coating life models," Renewable Energy, Elsevier, vol. 80(C), pages 837-848.
    8. Castorrini, Alessio & Ortolani, Andrea & Campobasso, M. Sergio, 2023. "Assessing the progression of wind turbine energy yield losses due to blade erosion by resolving damage geometries from lab tests and field observations," Renewable Energy, Elsevier, vol. 218(C).
    9. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    10. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Rebecca J. Barthelmie & Gunner C. Larsen & Sara C. Pryor, 2023. "Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 16(12), pages 1-29, June.
    12. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    13. Castorrini, Alessio & Barnabei, Valerio F. & Domenech, Luis & Šakalyté, Asta & Sánchez, Fernando & Campobasso, M. Sergio, 2024. "Impact of meteorological data factors and material characterization method on the predictions of leading edge erosion of wind turbine blades," Renewable Energy, Elsevier, vol. 227(C).
    14. Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
    15. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    16. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    2. Castorrini, Alessio & Barnabei, Valerio F. & Domenech, Luis & Šakalyté, Asta & Sánchez, Fernando & Campobasso, M. Sergio, 2024. "Impact of meteorological data factors and material characterization method on the predictions of leading edge erosion of wind turbine blades," Renewable Energy, Elsevier, vol. 227(C).
    3. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    4. Hoksbergen, T.H. & Akkerman, R. & Baran, I., 2023. "Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades," Renewable Energy, Elsevier, vol. 218(C).
    5. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    6. Verma, Amrit Shankar & Yan, Jiquan & Hu, Weifei & Jiang, Zhiyu & Shi, Wei & Teuwen, Julie J.E., 2023. "A review of impact loads on composite wind turbine blades: Impact threats and classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    8. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    9. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Leon Mishnaevsky & Antonios Tempelis & Yauheni Belahurau & Nicolai Frost-Jensen Johansen, 2024. "Microplastics Emission from Eroding Wind Turbine Blades: Preliminary Estimations of Volume," Energies, MDPI, vol. 17(24), pages 1-15, December.
    11. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    12. Xiaohang Wang & Zhenbo Tang & Na Yan & Guojun Zhu, 2022. "Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    13. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    14. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Verma, Amrit Shankar & Jiang, Zhiyu & Caboni, Marco & Verhoef, Hans & van der Mijle Meijer, Harald & Castro, Saullo G.P. & Teuwen, Julie J.E., 2021. "A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system," Renewable Energy, Elsevier, vol. 178(C), pages 1435-1455.
    16. Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
    17. Pugh, K. & Nash, J.W. & Reaburn, G. & Stack, M.M., 2021. "On analytical tools for assessing the raindrop erosion of wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Bech, Jakob Ilsted & Johansen, Nicolai Frost-Jensen & Madsen, Martin Bonde & Hannesdóttir, Ásta & Hasager, Charlotte Bay, 2022. "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades," Renewable Energy, Elsevier, vol. 197(C), pages 776-789.
    19. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    20. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6285-:d:1542799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.