IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4550-d1165075.html
   My bibliography  Save this article

Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas

Author

Listed:
  • Rebecca J. Barthelmie

    (Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA)

  • Gunner C. Larsen

    (Wind Energy Department, Danish Technical University, 4000 Roskilde, Denmark)

  • Sara C. Pryor

    (Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA)

Abstract

Offshore wind energy development along the East Coast of the US is proceeding quickly as a result of large areas with an excellent wind resource, low water depths and proximity to large electricity markets. Careful planning of wind turbine deployments in these offshore wind energy lease areas (LA) is required to maximize power output and to minimize wake losses between neighboring wind farms as well as those internal to each wind farm. Here, we used microscale wind modeling with two wake parameterizations to evaluate the potential annual energy production (AEP) and wake losses in the different LA areas, and we developed and applied a levelized cost of energy (LCoE) model to quantify the impact of different wind turbine layouts on LCoE. The modeling illustrated that if the current suite of LA is subject to deployment of 15 MW wind turbines at a spacing of 1.85 km, they will generate 4 to 4.6% of total national electricity demand. The LCoE ranged from $68 to $102/MWh depending on the precise layout selected, which is cost competitive with many other generation sources. The scale of the wind farms that will be deployed greatly exceed those currently operating and mean that wake-induced power losses are considerable but still relatively poorly constrained. AEP and LCoE exhibited significant dependence on the precise wake model applied. For the largest LA, the AEP differed by over 10% depending on the wake model used, leading to a $10/MWh difference in LCoE for the wind turbine layout with 1.85 km spacing.

Suggested Citation

  • Rebecca J. Barthelmie & Gunner C. Larsen & Sara C. Pryor, 2023. "Modeling Annual Electricity Production and Levelized Cost of Energy from the US East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 16(12), pages 1-29, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4550-:d:1165075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shields, Matt & Beiter, Philipp & Nunemaker, Jake & Cooperman, Aubryn & Duffy, Patrick, 2021. "Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind," Applied Energy, Elsevier, vol. 298(C).
    2. Jens Nørkær Sørensen & Gunner Christian Larsen, 2021. "A Minimalistic Prediction Model to Determine Energy Production and Costs of Offshore Wind Farms," Energies, MDPI, vol. 14(2), pages 1-27, January.
    3. David Rowell & Brian Jenkins & James Carroll & David McMillan, 2022. "How Does the Accessibility of Floating Wind Farm Sites Compare to Existing Fixed Bottom Sites?," Energies, MDPI, vol. 15(23), pages 1-14, November.
    4. Rebecca J. Barthelmie & Kaitlyn E. Dantuono & Emma J. Renner & Frederick L. Letson & Sara C. Pryor, 2021. "Extreme Wind and Waves in U.S. East Coast Offshore Wind Energy Lease Areas," Energies, MDPI, vol. 14(4), pages 1-25, February.
    5. Beatriz Cañadillas & Richard Foreman & Gerald Steinfeld & Nick Robinson, 2023. "Cumulative Interactions between the Global Blockage and Wake Effects as Observed by an Engineering Model and Large-Eddy Simulations," Energies, MDPI, vol. 16(7), pages 1-24, March.
    6. Bart Matthijs Doekemeijer & Eric Simley & Paul Fleming, 2022. "Comparison of the Gaussian Wind Farm Model with Historical Data of Three Offshore Wind Farms," Energies, MDPI, vol. 15(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara C. Pryor & Rebecca J. Barthelmie & Jacob J. Coburn & Xin Zhou & Marianne Rodgers & Heather Norton & M. Sergio Campobasso & Beatriz Méndez López & Charlotte Bay Hasager & Leon Mishnaevsky, 2024. "Prioritizing Research for Enhancing the Technology Readiness Level of Wind Turbine Blade Leading-Edge Erosion Solutions," Energies, MDPI, vol. 17(24), pages 1-29, December.
    2. Brian Loza & Luis I. Minchala & Danny Ochoa-Correa & Sergio Martinez, 2024. "Grid-Friendly Integration of Wind Energy: A Review of Power Forecasting and Frequency Control Techniques," Sustainability, MDPI, vol. 16(21), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pryor, Sara C. & Barthelmie, Rebecca J., 2024. "Wind shadows impact planning of large offshore wind farms," Applied Energy, Elsevier, vol. 359(C).
    2. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    3. Farid Khazaeli Moghadam & Nils Desch, 2023. "Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications," Energies, MDPI, vol. 16(3), pages 1-26, February.
    4. Yanez-Rosales, Pablo & Río-Gamero, B. Del & Schallenberg-Rodríguez, Julieta, 2024. "Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands," Energy, Elsevier, vol. 307(C).
    5. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    6. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    7. Richard J. Foreman & Beatriz Cañadillas & Nick Robinson, 2024. "The Atmospheric Stability Dependence of Far Wakes on the Power Output of Downstream Wind Farms," Energies, MDPI, vol. 17(2), pages 1-23, January.
    8. Jeong, Michael & Loth, Eric & Qin, Chris & Selig, Michael & Johnson, Nick, 2024. "Aerodynamic rotor design for a 25 MW offshore downwind turbine," Applied Energy, Elsevier, vol. 353(PA).
    9. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Jaan Rönkkö & Ali Khosravi & Sanna Syri, 2023. "Techno-Economic Assessment of a Hybrid Offshore Wind–Wave Farm: Case Study in Norway," Energies, MDPI, vol. 16(11), pages 1-24, May.
    11. Wang, H. & Ke, S.T. & Wang, T.G. & Kareem, A. & Hu, L. & Ge, Y.J., 2022. "Multi-stage typhoon-induced wind effects on offshore wind turbines using a data-driven wind speed field model," Renewable Energy, Elsevier, vol. 188(C), pages 765-777.
    12. Xu, Li & Wang, Jin & Ou, Yanxia & Fu, Yang & Bian, Xiaoyan, 2022. "A novel decision-making system for selecting offshore wind turbines with PCA and D numbers," Energy, Elsevier, vol. 258(C).
    13. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    14. Centeno-Telleria, Manu & Yue, Hong & Carrol, James & Penalba, Markel & Aizpurua, Jose I., 2024. "Impact of operations and maintenance on the energy production of floating offshore wind farms across the North Sea and the Iberian Peninsula," Renewable Energy, Elsevier, vol. 224(C).
    15. Masoud, Alaa A., 2024. "Hybrid wind-solar energy potential modeling using ERA5 and solar irradiation data in google Earth Engine," Renewable Energy, Elsevier, vol. 232(C).
    16. Bento, Pedro M.R. & Mariano, Silvio J.P.S. & Pombo, Jose A.N. & Calado, Maria R.A., 2024. "Large-scale penetration of renewables in the Iberian power system: Evolution, challenges and flexibility options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    17. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Hughes, Llewelyn & Longden, Thomas, 2024. "Offshore wind power in the Asia-Pacific: Expert elicitation on costs and policies," Energy Policy, Elsevier, vol. 184(C).
    19. Liu, Min & Lu, Da-Gang & Qin, Jianjun & Miao, Yi-Zhi & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2024. "Risk-informed integrated design optimization for offshore wind farm electrical systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4550-:d:1165075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.