IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6260-d1541751.html
   My bibliography  Save this article

Microplastics Emission from Eroding Wind Turbine Blades: Preliminary Estimations of Volume

Author

Listed:
  • Leon Mishnaevsky

    (Department of Wind and Energy Systems, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Antonios Tempelis

    (Department of Wind and Energy Systems, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Yauheni Belahurau

    (Department of Wind and Energy Systems, Technical University of Denmark, 4000 Roskilde, Denmark)

  • Nicolai Frost-Jensen Johansen

    (Department of Wind and Energy Systems, Technical University of Denmark, 4000 Roskilde, Denmark)

Abstract

The erosion of wind turbine blades is one of the most frequently observed mechanisms of wind turbine blade damage. In recent months and years, concerns about high volumes of eroded plastics and associated pollution risks have surfaced on social networks and in newspapers. In this scientific paper, we estimate the mass of plastic removed from blade surface erosion, using both a phenomenological model of blade erosion and the observed frequency of necessary repairs of blades. Our findings indicate that the mass of eroded plastic ranges from 30 to 540 g per year per blade. The mass loss is higher for wind turbines offshore (80–1000 g/year per blade) compared to onshore (8–50 g/year per blade). The estimations are compared with scientific literature data and other gray literature sources. Using the entire Danish wind farms portfolio, we quantify the yearly mass of plastic from blade erosion to be about 1.6 tons per year, which is an order of magnitude less than that from footwear and road marking and three orders of magnitude less than that from tires. While the contribution of wind blade erosion is small compared to other sources, the results of this work underline the importance of the (A) effective leading-edge protection of wind turbines, (B) regular and efficient maintenance, and (C) the optimal selection of materials used.

Suggested Citation

  • Leon Mishnaevsky & Antonios Tempelis & Yauheni Belahurau & Nicolai Frost-Jensen Johansen, 2024. "Microplastics Emission from Eroding Wind Turbine Blades: Preliminary Estimations of Volume," Energies, MDPI, vol. 17(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6260-:d:1541751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    2. Shrirang M. Pathak & V. Praveen Kumar & Venkataramana Bonu & Leon Mishnaevsky & R. V. Lakshmi & Parthasarathi Bera & Harish C. Barshilia, 2023. "Development of Cellulose-Reinforced Polyurethane Coatings: A Novel Eco-Friendly Approach for Wind Turbine Blade Protection," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara C. Pryor & Rebecca J. Barthelmie & Jacob J. Coburn & Xin Zhou & Marianne Rodgers & Heather Norton & M. Sergio Campobasso & Beatriz Méndez López & Charlotte Bay Hasager & Leon Mishnaevsky, 2024. "Prioritizing Research for Enhancing the Technology Readiness Level of Wind Turbine Blade Leading-Edge Erosion Solutions," Energies, MDPI, vol. 17(24), pages 1-29, December.
    2. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    3. Hoksbergen, T.H. & Akkerman, R. & Baran, I., 2023. "Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades," Renewable Energy, Elsevier, vol. 218(C).
    4. Rubel C. Das & Yu-Lin Shen, 2023. "Analysis of Wind Farms under Different Yaw Angles and Wind Speeds," Energies, MDPI, vol. 16(13), pages 1-19, June.
    5. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    8. Xiaohang Wang & Zhenbo Tang & Na Yan & Guojun Zhu, 2022. "Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    9. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    10. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    11. Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
    12. Ali Akbar Firoozi & Farzad Hejazi & Ali Asghar Firoozi, 2024. "Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design," Energies, MDPI, vol. 17(12), pages 1-30, June.
    13. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    14. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    15. Mukesh Kumar Rathore & Meena Agrawal & Prashant Baredar & Anoop Kumar Shukla & Gaurav Dwivedi & Puneet Verma, 2023. "Fabrication and Performance Analysis of the Aero-Leaf Savonius Wind Turbine Tree," Energies, MDPI, vol. 16(7), pages 1-17, March.
    16. Fred Letson & Sara C. Pryor, 2023. "From Hydrometeor Size Distribution Measurements to Projections of Wind Turbine Blade Leading-Edge Erosion," Energies, MDPI, vol. 16(9), pages 1-29, May.
    17. Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
    18. Ansari, Quaiyum M. & Sánchez, Fernando & Mishnaevsky, Leon & Young, Trevor M., 2024. "Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion," Renewable Energy, Elsevier, vol. 226(C).
    19. Bech, Jakob Ilsted & Johansen, Nicolai Frost-Jensen & Madsen, Martin Bonde & Hannesdóttir, Ásta & Hasager, Charlotte Bay, 2022. "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades," Renewable Energy, Elsevier, vol. 197(C), pages 776-789.
    20. Lopez, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel & Dimitrov, Nikolay, 2024. "Reliability-based leading edge erosion maintenance strategy selection framework," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6260-:d:1541751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.