IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004439.html
   My bibliography  Save this article

Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion

Author

Listed:
  • Ansari, Quaiyum M.
  • Sánchez, Fernando
  • Mishnaevsky, Leon
  • Young, Trevor M.

Abstract

During operation, wind turbine blades are subjected to a wide range of environmental and loading conditions and blade erosion can have a negative impact on performance and power production. The layer-wise thickness of a leading edge coating system can have a substantial effect on erosion rate due to rain droplet impact, which can result in a variety of complex failure modes, such as delamination of the coating-substrate interface. The objective of this work to develop single droplet numerical models to investigate the influence of elastic stress wave developments generated during impact. Following that, a single rain droplet FE parametric research was performed with different coating materials, coating and filler putty thicknesses. It is shown that stiffer coatings lead to higher stresses. Furthermore, thicker coatings can result in lower stress transfer to the filler material. The empirical equations developed for coating thickness and filler putty thickness were found to be in good agreement with each other. This detailed baseline investigation can help in understanding the effect of coating and filler putty thickness on rain erosion rate, as well as analysing different coating designs using empirical equations for the development of more durable leading edge protection coatings for wind turbine blade applications.

Suggested Citation

  • Ansari, Quaiyum M. & Sánchez, Fernando & Mishnaevsky, Leon & Young, Trevor M., 2024. "Evaluation of offshore wind turbine blades coating thickness effect on leading edge protection system subject to rain erosion," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004439
    DOI: 10.1016/j.renene.2024.120378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    2. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoksbergen, T.H. & Akkerman, R. & Baran, I., 2023. "Rain droplet impact stress analysis for leading edge protection coating systems for wind turbine blades," Renewable Energy, Elsevier, vol. 218(C).
    2. Abel Arredondo-Galeana & Baran Yeter & Farhad Abad & Stephanie Ordóñez-Sánchez & Saeid Lotfian & Feargal Brennan, 2023. "Material Selection Framework for Lift-Based Wave Energy Converters Using Fuzzy TOPSIS," Energies, MDPI, vol. 16(21), pages 1-26, October.
    3. Perumal, Govindhan, 2024. "Production of biodiesel from waste cooking oil using a novel surface-functionalized CaMoO4/ TiO2 solid catalyst," Renewable Energy, Elsevier, vol. 228(C).
    4. Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
    5. Lopez, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel & Dimitrov, Nikolay, 2024. "Reliability-based leading edge erosion maintenance strategy selection framework," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.