IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6129-d1537281.html
   My bibliography  Save this article

Pathways to Carbon Neutrality: A Review of Strategies and Technologies Across Sectors

Author

Listed:
  • Israa Al Khaffaf

    (Department of Industrial Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Adil Tamimi

    (Department of Civil Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Vian Ahmed

    (Department of Industrial Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

Abstract

Climate change, driven by human-induced greenhouse gas emissions, poses a critical threat to the planet, prompting countries worldwide to pledge carbon neutrality by the mid-century. This literature review identifies and analyzes strategies and technologies for achieving carbon neutrality across various sectors and regions. The study aims to determine the research focus across sectors, highlighting the well-studied sectors while identifying critical gaps in other sectors, offering policymakers and researchers a clearer understanding of which sectors need more attention and investment to achieve carbon neutrality goals. Through employing a systematic literature review approach, PRISMA 2020, 113 articles published between 2019 and 2023 were analyzed using content and bibliometric analysis. The results of the content analysis show that the energy sector is the most extensively studied, with a focus on the integration of renewable energy sources, energy efficiency, and carbon capture technologies. Furthermore, results showed promising developments in energy-efficient electrification methods, and circular economy principles can be seen in the building, transportation, and industrial sectors. On the other hand, while having a large potential for sequestering carbon, the agriculture and forestry sectors are still understudied. As for the bibliometric analysis, this study reveals the complex interplay between technological innovation, sectoral strategies, and policy intervention in achieving carbon neutrality. It highlights the need for integrated, interdisciplinary approaches that consider interactions between technological, economic, social, and environmental factors. The analysis also emphasizes the importance of lifecycle assessment, economic complexity, and investments in shaping effective carbon neutrality strategies. As such, future research should address the identified gaps, particularly in agriculture and forestry, and develop more comprehensive models for the transition to carbon neutrality that incorporate both technological solutions and broader socio-economic considerations.

Suggested Citation

  • Israa Al Khaffaf & Adil Tamimi & Vian Ahmed, 2024. "Pathways to Carbon Neutrality: A Review of Strategies and Technologies Across Sectors," Energies, MDPI, vol. 17(23), pages 1-38, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6129-:d:1537281
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    2. Yuan Yuan & Fengting Qian & Jiaqi Lu & Dungang Gu & Yuhang Lou & Na Xue & Guanghui Li & Wenjie Liao & Nan Zhang, 2022. "Design Optimization and Carbon Footprint Analysis of an Electrodeionization System with Flexible Load Regulation," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    3. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    4. Lombardi, Francesco & Pickering, Bryn & Pfenninger, Stefan, 2023. "What is redundant and what is not? Computational trade-offs in modelling to generate alternatives for energy infrastructure deployment," Applied Energy, Elsevier, vol. 339(C).
    5. Ozawa, A. & Tsani, T. & Kudoh, Y., 2022. "Japan's pathways to achieve carbon neutrality by 2050 – Scenario analysis using an energy modeling methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Waranya Thepsaskul & Wongkot Wongsapai & Jirakom Sirisrisakulchai & Tassawan Jaitiang & Sopit Daroon & Varoon Raksakulkan & Phitsinee Muangjai & Chaichan Ritkrerkkrai & Pana Suttakul & Gengwit Wattaka, 2023. "Potential Business Models of Carbon Capture and Storage (CCS) for the Oil Refining Industry in Thailand," Energies, MDPI, vol. 16(19), pages 1-16, October.
    7. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    9. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    10. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    11. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    12. Maldynova Aizhana & Davletova Maira & Ilyas Assel & Butin Erkebulan, 2022. "Improving Marketing Approaches to the Energy Sector of Kazakhstan for Decarbonization," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 410-417, May.
    13. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    14. Ying Fan & Zhuang Liang & Xing Yao, 2022. "Regional power system transitions towards carbon neutrality: The case of North China," Economic and Political Studies, Taylor & Francis Journals, vol. 10(4), pages 416-441, October.
    15. Licandeo, Francisca & Flores, Francisco & Feijoo, Felipe, 2023. "Assessing the impacts of economy-wide emissions policies in the water, energy, and land systems considering water scarcity scenarios," Applied Energy, Elsevier, vol. 342(C).
    16. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Zhang, Shufan & Ma, Minda & Li, Kai & Ma, Zhili & Feng, Wei & Cai, Weiguang, 2022. "Historical carbon abatement in the commercial building operation: China versus the US," Energy Economics, Elsevier, vol. 105(C).
    18. Li, Xiang & Lepour, Dorsan & Heymann, Fabian & Maréchal, François, 2023. "Electrification and digitalization effects on sectoral energy demand and consumption: A prospective study towards 2050," Energy, Elsevier, vol. 279(C).
    19. Yang, Bo & Wei, Yi-Ming & Liu, Lan-Cui & Hou, Yun-Bing & Zhang, Kun & Yang, Lai & Feng, Ye, 2021. "Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives," Energy Economics, Elsevier, vol. 96(C).
    20. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    21. Xiao, Lin & Guan, Yuru & Guo, Yaqin & Xue, Rui & Li, Jiashuo & Shan, Yuli, 2022. "Emission accounting and drivers in 2004 EU accession countries," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flores, Francisco & Feijoo, Felipe & DeStephano, Paelina & Herc, Luka & Pfeifer, Antun & Duić, Neven, 2024. "Assessment of the impacts of renewable energy variability in long-term decarbonization strategies," Applied Energy, Elsevier, vol. 368(C).
    2. Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
    3. Lin, Boqiang & Liu, Zhiwei, 2024. "Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example," Energy Policy, Elsevier, vol. 188(C).
    4. Yiannis Moustakis & Tobias Nützel & Hao-Wei Wey & Wenkai Bao & Julia Pongratz, 2024. "Temperature overshoot responses to ambitious forestation in an Earth System Model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    7. Maribel Vega-Arce & Gonzalo Salas & Gastón Núñez-Ulloa & Cristián Pinto-Cortez & Ivelisse Torres Fernandez & Yuh-Shan Ho, 2019. "Research performance and trends in child sexual abuse research: a Science Citation Index Expanded-based analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1505-1525, December.
    8. Antonio-José Moreno-Guerrero & María Elena Parra-González & Jesús López-Belmonte & Adrián Segura-Robles, 2022. "Science mapping analysis of “cultural” in web of science (1908–2019)," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 239-257, February.
    9. Liu, Xiaotong & Zhang, Zhe & Cao, Chang & Wang, Jingda, 2024. "Carbon emissions and network spillover effects along the supply chain—Evidence from China," Economics Letters, Elsevier, vol. 241(C).
    10. Casari, Marco & Tavoni, Alessandro, 2024. "Climate clubs in the laboratory," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 110(C).
    11. Adela Toscano-Valle & Antonio Sianes & Francisco Santos-Carrillo & Luis A. Fernández-Portillo, 2022. "Can the Rational Design of International Institutions Solve Cooperation Problems? Insights from a Systematic Literature Review," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    12. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    13. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    14. Corsini, Alberto & Pezzoni, Michele, 2023. "Does grant funding foster research impact? Evidence from France," Journal of Informetrics, Elsevier, vol. 17(4).
    15. Marek Kwiek & Wojciech Roszka, 2022. "Academic vs. biological age in research on academic careers: a large-scale study with implications for scientifically developing systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3543-3575, June.
    16. Vanessa Sandoval-Romero & Vincent Larivière, 2020. "The national system of researchers in Mexico: implications of publication incentives for researchers in social sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 99-126, January.
    17. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    18. Malewska, Kamila & Cyfert, Szymon & Chwiłkowska-Kubala, Anna & Mierzejewska, Katrzyna & Szumowski, Witold, 2024. "The missing link between digital transformation and business model innovation in energy SMEs: The role of digital organisational culture," Energy Policy, Elsevier, vol. 192(C).
    19. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    20. Mike Thelwall, 2020. "Mid-career field switches reduce gender disparities in academic publishing," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(3), pages 1365-1383, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6129-:d:1537281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.