IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i3p54-1113d1459324.html
   My bibliography  Save this article

Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review

Author

Listed:
  • Oluwatoyin J. Gbadeyan

    (Department of Chemistry, Durban University of Technology, Durban 4001, South Africa)

  • Joseph Muthivhi

    (Department of Chemistry, Durban University of Technology, Durban 4001, South Africa)

  • Linda Z. Linganiso

    (Department of Physical Chemistry, University of South Africa, Pretoria 0003, South Africa)

  • Nirmala Deenadayalu

    (Department of Chemistry, Durban University of Technology, Durban 4001, South Africa)

Abstract

Climate change has become a global nightmare, and the awareness of the causes of carbon emissions has resulted in rigorous studies. These studies linked the increase in global warming with booming economic growth. Since global warming has become more apparent, researchers have explored ways to decouple economic activities from carbon growth. Economic and carbon growth must be decoupled to achieve a low-carbon economy to support the carbon-growth plan or emission-reduction strategy. The world is transitioning toward a carbon-neutral and green ecosystem, so finding ways to decouple carbon emissions from economic activities is an exciting topic to explore. This study reviews current information on the importance of decoupling energy from economic growth innovative techniques that thoroughly examine the challenges and constraints of low-carbon energy systems. In order to examine the detrimental effects of carbon emissions on ecosystems and the ways in which economic expansion contributes to carbon footprints, more than three hundred research papers were gathered using several search engines, including Elsevier and Google Scholar. This review revealed that decarbonization and dematerialization had been achieved without declining global economic growth. It also provides information on energy use and economic activities leading to global carbon emissions and alternative solutions to the global challenge of climate change. The decoupling methods commonly used to determine the impact of energy decarbonization on economic growth are explored. All the results suggest that economic growth is a primary mover of global carbon emission increase and must be separated to achieve a carbon environment.

Suggested Citation

  • Oluwatoyin J. Gbadeyan & Joseph Muthivhi & Linda Z. Linganiso & Nirmala Deenadayalu, 2024. "Decoupling Economic Growth from Carbon Emissions: A Transition toward Low-Carbon Energy Systems—A Critical Review," Clean Technol., MDPI, vol. 6(3), pages 1-38, August.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:3:p:54-1113:d:1459324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/3/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/3/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    2. Vicent Alcántara Escolano & Emilio Padilla Rosa, 2005. "Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo," Revista de Economia Critica, Asociacion de Economia Critica, vol. 4, pages 17-37.
    3. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    4. Stavros Afionis & Marco Sakai & Kate Scott & John Barrett & Andy Gouldson, 2017. "Consumption‐based carbon accounting: does it have a future?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(1), January.
    5. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    6. Geoffrey Blanford & Elmar Kriegler & Massimo Tavoni, 2014. "Harmonization vs. fragmentation: overview of climate policy scenarios in EMF27," Climatic Change, Springer, vol. 123(3), pages 383-396, April.
    7. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    8. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    9. Castán Broto, Vanesa & Baptista, Idalina & Kirshner, Joshua & Smith, Shaun & Neves Alves, Susana, 2018. "Energy justice and sustainability transitions in Mozambique," Applied Energy, Elsevier, vol. 228(C), pages 645-655.
    10. Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019. "European electricity sector decarbonization under different levels of foresight," Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
    11. Susanne Olbrisch & Erik Haites & Matthew Savage & Pradeep Dadhich & Manish Kumar Shrivastava, 2011. "Estimates of incremental investment for and cost of mitigation measures in developing countries," Climate Policy, Taylor & Francis Journals, vol. 11(3), pages 970-986, May.
    12. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    13. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    14. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    15. Omri, Anis, 2013. "CO2 emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models," Energy Economics, Elsevier, vol. 40(C), pages 657-664.
    16. Arouri, Mohamed El Hedi & Ben Youssef, Adel & M'henni, Hatem & Rault, Christophe, 2012. "Energy consumption, economic growth and CO2 emissions in Middle East and North African countries," Energy Policy, Elsevier, vol. 45(C), pages 342-349.
    17. Ben Groom & David Maddison Pr., 2019. "New Estimates of the Elasticity of Marginal Utility for the UK," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1155-1182, April.
    18. Wang, Qiang & Dong, Zequn & Li, Rongrong & Wang, Lili, 2022. "Renewable energy and economic growth: New insight from country risks," Energy, Elsevier, vol. 238(PC).
    19. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model," Energy, Elsevier, vol. 119(C), pages 453-471.
    20. Ann Bostrom & M. Granger Morgan & Baruch Fischhoff & Daniel Read, 1994. "What Do People Know About Global Climate Change? 1. Mental Models," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 959-970, December.
    21. Shafik, Nemat, 1994. "Economic Development and Environmental Quality: An Econometric Analysis," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 757-773, Supplemen.
    22. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    23. B nyamin Er & Yusuf Guneysu & H seyin nal, 2018. "Financing Renewable Energy Projects: An Empirical Analysis for Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 180-185.
    24. Haewon McJeon & Jae Edmonds & Nico Bauer & Leon Clarke & Brian Fisher & Brian P. Flannery & Jérôme Hilaire & Volker Krey & Giacomo Marangoni & Raymond Mi & Keywan Riahi & Holger Rogner & Massimo Tavon, 2014. "Limited impact on decadal-scale climate change from increased use of natural gas," Nature, Nature, vol. 514(7523), pages 482-485, October.
    25. Selden Thomas M. & Song Daqing, 1994. "Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 27(2), pages 147-162, September.
    26. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.
    27. Wang, Juan & Li, Ziming & Wu, Tong & Wu, Siyu & Yin, Tingwei, 2022. "The decoupling analysis of CO2 emissions from power generation in Chinese provincial power sector," Energy, Elsevier, vol. 255(C).
    28. Hertwich, Edgar, 2019. "The Carbon Footprint of Material Production Rises to 23% of Global Greenhouse Gas Emissions," SocArXiv n9ecw, Center for Open Science.
    29. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    30. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    31. Sayed, Mohammad Ali & Ghafouri, Mohsen & Atallah, Ribal & Debbabi, Mourad & Assi, Chadi, 2023. "Protecting the future grid: An electric vehicle robust mitigation scheme against load altering attacks on power grids," Applied Energy, Elsevier, vol. 350(C).
    32. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    33. Baran Doda, 2016. "How to price carbon in good times … and bad!," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 7(1), pages 135-144, January.
    34. Servaas Storm & Enno Schroder, 2018. "Economic Growth and Carbon Emissions: The Road to `Hothouse Earth` is Paved with Good Intentions," Working Papers Series 84, Institute for New Economic Thinking.
    35. Arrow, K. & Cropper, M. & Gollier, C. & Groom, B. & Heal, G. & Newell, R. & Nordhaus, W. & Pindyck, R. & Pizer, W. & Portney, P. & Sterner, T. & Tol, R. S. J. & Weitzman, Martin L., 2013. "Determining Benefits and Costs for Future Generations," Scholarly Articles 12841963, Harvard University Department of Economics.
    36. Lacey-Barnacle, M. & Bird, C.M., 2018. "Intermediating energy justice? The role of intermediaries in the civic energy sector in a time of austerity," Applied Energy, Elsevier, vol. 226(C), pages 71-81.
    37. Bartiaux, Françoise & Vandeschrick, Christophe & Moezzi, Mithra & Frogneux, Nathalie, 2018. "Energy justice, unequal access to affordable warmth, and capability deprivation: A quantitative analysis for Belgium," Applied Energy, Elsevier, vol. 225(C), pages 1219-1233.
    38. Vatcharin Sirimaneetham & Jonathan R.W. Temple, 2009. "Macroeconomic Stability and the Distribution of Growth Rates," The World Bank Economic Review, World Bank, vol. 23(3), pages 443-479, September.
    39. Kan, Xiaoming & Hedenus, Fredrik & Reichenberg, Lina, 2020. "The cost of a future low-carbon electricity system without nuclear power – the case of Sweden," Energy, Elsevier, vol. 195(C).
    40. Ang, James B., 2008. "Economic development, pollutant emissions and energy consumption in Malaysia," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 271-278.
    41. Managi, Shunsuke & Jena, Pradyot Ranjan, 2008. "Environmental productivity and Kuznets curve in India," Ecological Economics, Elsevier, vol. 65(2), pages 432-440, April.
    42. Willand, Nicola & Horne, Ralph, 2018. "“They are grinding us into the ground” – The lived experience of (in)energy justice amongst low-income older households," Applied Energy, Elsevier, vol. 226(C), pages 61-70.
    43. Jeyhun I. Mikayilov & Fakhri J. Hasanov & Marzio Galeotti, 2018. "Decoupling of C02 Emissions and GDP: A Time-Varying Cointegration Approach," IEFE Working Papers 101, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    44. William Travis & Mary Huisenga, 2013. "The effect of rate of change, variability, and extreme events on the pace of adaptation to a changing climate," Climatic Change, Springer, vol. 121(2), pages 209-222, November.
    45. Park, Donghyun & Shin, Kwanho, 2012. "Performance of the Service Sector in the Republic of Korea: An Empirical Investigation," ADB Economics Working Paper Series 324, Asian Development Bank.
    46. Saboori, Behnaz & Sapri, Maimunah & bin Baba, Maizan, 2014. "Economic growth, energy consumption and CO2 emissions in OECD (Organization for Economic Co-operation and Development)'s transport sector: A fully modified bi-directional relationship approach," Energy, Elsevier, vol. 66(C), pages 150-161.
    47. Kenneth Gillingham & James H. Stock, 2018. "The Cost of Reducing Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 32(4), pages 53-72, Fall.
    48. Harald Winkler & Randall Spalding-Fecher & Lwazikazi Tyani & Khorommbi Matibe, 2002. "Cost-benefit analysis of energy efficiency in urban low-cost housing," Development Southern Africa, Taylor & Francis Journals, vol. 19(5), pages 593-614.
    49. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    50. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Georgescu & Jani Kinnunen, 2024. "Dynamic interactions between GDP, renewable energy, innovation, and CO2 emissions in Finland: a fourier-augmented ARDL analysis," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-23, December.
    2. Mariana Januário & Ricardo Gomes & Patrícia Baptista & Paulo Ferrão, 2024. "Integrated Energy and Environmental Modeling to Design Cost-Effective Building Solutions at a Regional Level," Energies, MDPI, vol. 17(22), pages 1-33, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    2. Begum, Rawshan Ara & Sohag, Kazi & Abdullah, Sharifah Mastura Syed & Jaafar, Mokhtar, 2015. "CO2 emissions, energy consumption, economic and population growth in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 594-601.
    3. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    4. Omri, Anis & Daly, Saida & Rault, Christophe & Chaibi, Anissa, 2015. "Financial development, environmental quality, trade and economic growth: What causes what in MENA countries," Energy Economics, Elsevier, vol. 48(C), pages 242-252.
    5. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    6. Jaruwan Chontanawat, 2020. "Dynamic Modelling of Causal Relationship between Energy Consumption, CO 2 Emission, and Economic Growth in SE Asian Countries," Energies, MDPI, vol. 13(24), pages 1-27, December.
    7. Saida Daly & Mohamed Abdouli, 2023. "The Nexus between Environmental Quality, Economic Growth, and Trade Openness in Saudi Arabia (1990-2017)," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 579-598, July.
    8. Aida Sy & Tony Tinker & Abdelkader Derbali & Lamia Jamel, 2016. "Economic growth, financial development, trade openness, and CO 2 emissions in European countries," African Journal of Accounting, Auditing and Finance, Inderscience Enterprises Ltd, vol. 5(2), pages 155-179.
    9. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    10. Kais, Saidi & Sami, Hammami, 2016. "An econometric study of the impact of economic growth and energy use on carbon emissions: Panel data evidence from fifty eight countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1101-1110.
    11. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    12. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    13. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    14. Saboori, Behnaz & Sulaiman, Jamalludin, 2013. "CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach," Energy, Elsevier, vol. 55(C), pages 813-822.
    15. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    16. Lamia Jamel & Samir Maktouf, 2017. "The nexus between economic growth, financial development, trade openness, and CO2 emissions in European countries," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1341456-134, January.
    17. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    18. Shakoor Ahmed & Khorshed Alam & Afzalur Rashid & Jeff Gow, 2020. "Militarisation, Energy Consumption, CO2 Emissions and Economic Growth in Myanmar," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(6), pages 615-641, August.
    19. Arash Refah-Kahriz & Hassan Heidari & Mahdiyeh Rahimdel, 2023. "Is there a similar Granger causality among CO2 emissions, energy consumption and economic growth in different regimes in Iran?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3801-3822, April.
    20. Le Hoang Phong & Dang Thi Bach Van & Ho Hoang Gia Bao, 2018. "The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 275-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:3:p:54-1113:d:1459324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.