Life cycle cost assessment of biomass co-firing power plants with CO2 capture and storage considering multiple incentives
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2021.105173
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Agbor, Ezinwa & Zhang, Xiaolei & Kumar, Amit, 2014. "A review of biomass co-firing in North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 930-943.
- Morris, Jennifer & Paltsev, Sergey & Ku, Anthony Y., 2019. "Impacts of China's emissions trading schemes on deployment of power generation with carbon capture and storage," Energy Economics, Elsevier, vol. 81(C), pages 848-858.
- Wright, Daniel G. & Dey, Prasanta K. & Brammer, John, 2014. "A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK," Energy, Elsevier, vol. 71(C), pages 332-345.
- Zhang, Xian & Fan, Jing-Li & Wei, Yi-Ming, 2013. "Technology roadmap study on carbon capture, utilization and storage in China," Energy Policy, Elsevier, vol. 59(C), pages 536-550.
- Yi Yang & David Tilman & Clarence Lehman & Jared J. Trost, 2018. "Sustainable intensification of high-diversity biomass production for optimal biofuel benefits," Nature Sustainability, Nature, vol. 1(11), pages 686-692, November.
- Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
- Daniel L. Sanchez & Daniel M. Kammen, 2016. "A commercialization strategy for carbon-negative energy," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
- Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Johnston, Craig M.T. & van Kooten, G. Cornelis, 2015. "Economics of co-firing coal and biomass: An application to Western Canada," Energy Economics, Elsevier, vol. 48(C), pages 7-17.
- Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
- Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
- van Vuuren, Detlef P. & van Vliet, Jasper & Stehfest, Elke, 2009. "Future bio-energy potential under various natural constraints," Energy Policy, Elsevier, vol. 37(11), pages 4220-4230, November.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Xiang-Yu Wang & Bao-Jun Tang, 2018. "Review of comparative studies on market mechanisms for carbon emission reduction: a bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1141-1162, December.
- Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
- Roni, Mohammad S. & Chowdhury, Sudipta & Mamun, Saleh & Marufuzzaman, Mohammad & Lein, William & Johnson, Samuel, 2017. "Biomass co-firing technology with policies, challenges, and opportunities: A global review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1089-1101.
- Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
- Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Zhimin & Pan, Yanchun & Yang, Wen & Ma, Jianhua & Zhou, Ming, 2021. "Effects of government subsidies on green technology investment and green marketing coordination of supply chain under the cap-and-trade mechanism," Energy Economics, Elsevier, vol. 101(C).
- Israa Al Khaffaf & Adil Tamimi & Vian Ahmed, 2024. "Pathways to Carbon Neutrality: A Review of Strategies and Technologies Across Sectors," Energies, MDPI, vol. 17(23), pages 1-38, December.
- Longo, Sonia & Cellura, Maurizio & Luu, Le Quyen & Nguyen, Thanh Quang & Rincione, Roberta & Guarino, Francesco, 2024. "Circular economy and life cycle thinking applied to the biomass supply chain: A review," Renewable Energy, Elsevier, vol. 220(C).
- Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
- Paweł Gładysz & Magdalena Strojny & Łukasz Bartela & Maciej Hacaga & Thomas Froehlich, 2022. "Merging Climate Action with Energy Security through CCS—A Multi-Disciplinary Framework for Assessment," Energies, MDPI, vol. 16(1), pages 1-28, December.
- Tan, Zhizhou & Zeng, Xianhai & Lin, Boqiang, 2023. "How do multiple policy incentives influence investors’ decisions on biomass co-firing combined with carbon capture and storage retrofit projects for coal-fired power plants?," Energy, Elsevier, vol. 278(PB).
- Ding, Bingqing & Makowski, Marek & Nahorski, Zbigniew & Ren, Hongtao & Ma, Tieju, 2022. "Optimizing the technology pathway of China's liquid fuel production considering uncertain oil prices: A robust programming model," Energy Economics, Elsevier, vol. 115(C).
- Li, Xuelian & Chen, Lingzhi & Lin, Jyh-Horng, 2023. "Cap-and-trade mechanisms, green technology investment, and shadow insurance in a black swan environment," Energy Economics, Elsevier, vol. 124(C).
- Sin Sokrethya & Zarif Aminov & Nguyen Van Quan & Tran Dang Xuan, 2023. "Feasibility of 10 MW Biomass-Fired Power Plant Used Rice Straw in Cambodia," Energies, MDPI, vol. 16(2), pages 1-18, January.
- Guo, Jian & Zhong, Minghao & Chen, Shuran, 2022. "Analysis and simulation of BECCS vertical integration model in China based on evolutionary game and system dynamics," Energy, Elsevier, vol. 252(C).
- Lin, Boqiang & Liu, Zhiwei, 2024. "Optimal coal power phase-out pathway considering high renewable energy proportion: A provincial example," Energy Policy, Elsevier, vol. 188(C).
- Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
- Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
- Chen, Shi & Huang, Fu-Wei & Lin, Jyh-Horng, 2022. "Life insurance policyholder protection, government green subsidy, and cap-and-trade transactions in a black swan environment," Energy Economics, Elsevier, vol. 115(C).
- Lin, Boqiang & Liu, Zhiwei, 2024. "Assessment of China's flexible power investment value in the emission trading system," Applied Energy, Elsevier, vol. 359(C).
- Dan Yu & Caihong Zhang & Siyi Wang & Lan Zhang, 2023. "Evolutionary Game and Simulation Analysis of Power Plant and Government Behavior Strategies in the Coupled Power Generation Industry of Agricultural and Forestry Biomass and Coal," Energies, MDPI, vol. 16(3), pages 1-19, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Li, Jin & Wang, Rui & Li, Haoran & Nie, Yaoyu & Song, Xinke & Li, Mingyu & Shi, Mai & Zheng, Xinzhu & Cai, Wenjia & Wang, Can, 2021. "Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment," Applied Energy, Elsevier, vol. 285(C).
- Aviso, K.B. & Sy, C.L. & Tan, R.R. & Ubando, A.T., 2020. "Fuzzy optimization of carbon management networks based on direct and indirect biomass co-firing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Huang, Qian & Xu, Jiuping, 2023. "Carbon tax revenue recycling for biomass/coal co-firing using Stackelberg game: A case study of Jiangsu province, China," Energy, Elsevier, vol. 272(C).
- Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
- Zhang, Yun-Long & Liu, Lan-Cui & Kang, Jia-Ning & Peng, Song & Mi, Zhifu & Liao, Hua & Wei, Yi-Ming, 2024. "Economic feasibility assessment of coal-biomass co-firing power generation technology," Energy, Elsevier, vol. 296(C).
- Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
- Truong, An Ha & Ha-Duong, Minh & Tran, Hoang Anh, 2022.
"Economics of co-firing rice straw in coal power plants in Vietnam,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- an Ha Truong & Minh Ha-Duong & Hoang Anh Tran, 2022. "Economics of co-firing rice straw in coal power plants in Vietnam," Post-Print hal-03277278, HAL.
- Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
- Krzysztof Nowak & Sławomir Rabczak, 2021. "Co-Combustion of Biomass with Coal in Grate Water Boilers at Low Load Boiler Operation," Energies, MDPI, vol. 14(9), pages 1-13, April.
- Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
- Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
- Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
- Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
- Akbari, Maryam & Oyedun, Adetoyese Olajire & Kumar, Amit, 2020. "Techno-economic assessment of wet and dry torrefaction of biomass feedstock," Energy, Elsevier, vol. 207(C).
- Manouchehrinejad, Maryam & Bilek, E.M. Ted & Mani, Sudhagar, 2021. "Techno-economic analysis of integrated torrefaction and pelletization systems to produce torrefied wood pellets," Renewable Energy, Elsevier, vol. 178(C), pages 483-493.
- Yan, Linbo & Wang, Ziqi & Cao, Yang & He, Boshu, 2020. "Comparative evaluation of two biomass direct-fired power plants with carbon capture and sequestration," Renewable Energy, Elsevier, vol. 147(P1), pages 1188-1198.
- Hao Lv & Hao Ding & Dequn Zhou & Peng Zhou, 2014. "A Site Selection Model for a Straw-Based Power Generation Plant with CO 2 Emissions," Sustainability, MDPI, vol. 6(10), pages 1-16, October.
More about this item
Keywords
BECCS; Co-firing; Life cycle cost; Carbon price; Tax credit; Feed-in tariff;All these keywords.
JEL classification:
- Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
- Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
- Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
- Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:96:y:2021:i:c:s0140988321000785. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.