IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp231-242.html
   My bibliography  Save this article

Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating

Author

Listed:
  • Zhang, Chunxiao
  • Shen, Chao
  • Zhang, Yingbo
  • Pu, Jihong

Abstract

The building-integrated solar energy system is an important technology to achieve carbon neutrality in the building sector. However, traditional solar energy systems, such as PV modules, solar thermal collectors, and PV/T systems, are aimed to maximize electricity or heat yield separately, without considering flexible heat/electricity harvesting mode switching. In this study, a novel spectral splitting PV/T system, in which the silver nanofluids cover the surface of PV modules, is proposed to respond to a changeable outdoor environment. The transient numerical model is developed using Matlab software and validated with experiment results, and the mean relative percentage error of thermal efficiency is 6.43%. The feasibility of spectral splitting PV/T systems for domestic space heating is investigated. The influences of outdoor factors and operating parameters on the performance of PV/T systems are discussed for better regulating PV/T systems. Additionally, a flexible control strategy is proposed to achieve the goal of a 45 °C outlet temperature and enhance the overall efficiency. The results show that the daily mean energy harvesting in Zhengzhou, Beijing, and Harbin during the whole heating season can reach 2.69 MJ, 5.01 MJ, and 3.12 MJ with a collection area of 0.61 m2.

Suggested Citation

  • Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:231-242
    DOI: 10.1016/j.renene.2022.04.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Dengjia & Mo, Zhelong & Liu, Yanfeng & Ren, Yuchao & Fan, Jianhua, 2022. "Thermal performance analysis of large-scale flat plate solar collectors and regional applicability in China," Energy, Elsevier, vol. 238(PC).
    2. Vittorini, Diego & Castellucci, Nicola & Cipollone, Roberto, 2017. "Heat recovery potential and electrical performances in-field investigation on a hybrid PVT module," Applied Energy, Elsevier, vol. 205(C), pages 44-56.
    3. Solanki, S.C. & Dubey, Swapnil & Tiwari, Arvind, 2009. "Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors," Applied Energy, Elsevier, vol. 86(11), pages 2421-2428, November.
    4. Nahar, Afroza & Hasanuzzaman, M. & Rahim, N.A. & Parvin, S., 2019. "Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems," Renewable Energy, Elsevier, vol. 132(C), pages 284-295.
    5. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    6. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    7. Zhang, Shicong & Wang, Ke & Xu, Wei & Iyer-Raniga, Usha & Athienitis, Andreas & Ge, Hua & Cho, Dong woo & Feng, Wei & Okumiya, Masaya & Yoon, Gyuyoung & Mazria, Edward & Lyu, Yanjie, 2021. "Policy recommendations for the zero energy building promotion towards carbon neutral in Asia-Pacific Region," Energy Policy, Elsevier, vol. 159(C).
    8. Çiftçi, Erdem & Khanlari, Ataollah & Sözen, Adnan & Aytaç, İpek & Tuncer, Azim Doğuş, 2021. "Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation," Renewable Energy, Elsevier, vol. 180(C), pages 410-423.
    9. Hassani, Samir & Taylor, Robert A. & Mekhilef, Saad & Saidur, R., 2016. "A cascade nanofluid-based PV/T system with optimized optical and thermal properties," Energy, Elsevier, vol. 112(C), pages 963-975.
    10. Chen, Meijie & He, Yurong & Wang, Xinzhi & Hu, Yanwei, 2018. "Complementary enhanced solar thermal conversion performance of core-shell nanoparticles," Applied Energy, Elsevier, vol. 211(C), pages 735-742.
    11. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    12. Ashour, Amr Fathy & El-Awady, Ahmed T. & Tawfik, Mohsen A., 2022. "Numerical investigation on the thermal performance of a flat plate solar collector using ZnO & CuO water nanofluids under Egyptian weathering conditions," Energy, Elsevier, vol. 240(C).
    13. Wu, Shuang-Ying & Chen, Chen & Xiao, Lan, 2018. "Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel," Renewable Energy, Elsevier, vol. 125(C), pages 936-946.
    14. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Rahman, Mohammad Mafizur & Sultana, Nahid & Velayutham, Eswaran, 2022. "Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies," Renewable Energy, Elsevier, vol. 184(C), pages 252-265.
    16. Zhang, Chunxiao & Shen, Chao & Wei, Shen & Zhang, Yingbo & Sun, Cheng, 2021. "Flexible management of heat/electricity of novel PV/T systems with spectrum regulation by Ag nanofluids," Energy, Elsevier, vol. 221(C).
    17. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Pu, Jihong & Shen, Chao & Yang, Shaoxin & Zhang, Chunxiao & Chwieduk, Dorota & Kalogirou, Soteris A., 2022. "Feasibility investigation on using silver nanorods in energy saving windows for light/heat decoupling," Energy, Elsevier, vol. 245(C).
    19. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    20. Brekke, Nick & Dale, John & DeJarnette, Drew & Hari, Parameswar & Orosz, Matthew & Roberts, Kenneth & Tunkara, Ebrima & Otanicar, Todd, 2018. "Detailed performance model of a hybrid photovoltaic/thermal system utilizing selective spectral nanofluid absorption," Renewable Energy, Elsevier, vol. 123(C), pages 683-693.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinyu & Yang, Zhengda & Han, Xinlu & Ge, Yi & Wang, Yiya & Dong, Qiwei & Huang, Chenxing & Li, Huanan & Chen, Pengyu & Lin, Riyi, 2023. "Thermodynamic investigation of spectral splitting hybrid system integrated Cassegrain concentrator and mid/low-temperature solar thermochemical storage," Renewable Energy, Elsevier, vol. 217(C).
    2. Xia, Xiaokang & Cao, Xuhui & Li, Niansi & Yu, Bendong & Liu, Huifang & Jie ji,, 2023. "Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids," Energy, Elsevier, vol. 271(C).
    3. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Wei, Wenzhe, 2023. "Heat harvesting characteristics of building façades integrated photovoltaic /thermal-heat pump system in winter," Renewable Energy, Elsevier, vol. 215(C).
    4. Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
    5. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Kazemian, Arash & Khatibi, Meysam & Entezari, Soroush & Ma, Tao & Yang, Hongxing, 2023. "Efficient energy generation and thermal storage in a photovoltaic thermal system partially covered by solar cells and integrated with organic phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Wang, Lu & Yuan, JianJuan & Qiao, Xu & Kong, Xiangfei, 2023. "Optimal rule based double predictive control for the management of thermal energy in a distributed clean heating system," Renewable Energy, Elsevier, vol. 215(C).
    8. Zhou, Yi-Peng & Yang, Pei-Xin & Wang, Liang-Xu & Xu, Jia-Chen & He, Ya-Ling, 2023. "Full spectrum photon management of photonic crystal-based aerogels to achieve the multiscale multiphysics regulations and optimizations of PV-TE/T systems," Renewable Energy, Elsevier, vol. 217(C).
    9. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Zhang, Yingbo, 2023. "Cooling performance of all-orientated building facades integrated with photovoltaic-sky radiative cooling system in summer," Renewable Energy, Elsevier, vol. 217(C).
    10. Li, Jinyu & Yang, Zhengda & Wang, Yiya & Dong, Qiwei & Qi, Shitao & Huang, Chenxing & Wang, Xinwei & Lin, Riyi, 2023. "A novel non-confocal two-stage dish concentrating photovoltaic/thermal hybrid system utilizing spectral beam splitting technology: Optical and thermal performance investigations," Renewable Energy, Elsevier, vol. 206(C), pages 609-622.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Khosa, Azhar Abbas & Meng, Chunfeng, 2022. "The stability, optical behavior optimization of Ag@SiO2 nanofluids and their application in spectral splitting photovoltaic/thermal receivers," Renewable Energy, Elsevier, vol. 190(C), pages 865-878.
    2. Xia, Xiaokang & Cao, Xuhui & Li, Niansi & Yu, Bendong & Liu, Huifang & Jie ji,, 2023. "Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids," Energy, Elsevier, vol. 271(C).
    3. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    6. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    7. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    8. Hong, Wenpeng & Li, Boyu & Li, Haoran & Zi, Junliang, 2023. "Output energy distribution potential enabled by a nanofluid-assisted hybrid generator," Energy, Elsevier, vol. 265(C).
    9. Xia, Xiaokang & Gu, Tao & Fan, Miaomiao & Chen, Haifei & Yu, Bendong, 2022. "A novel solar PV/T driven photocatalytic multifunctional system: Concept proposal and performance investigation," Renewable Energy, Elsevier, vol. 196(C), pages 1127-1141.
    10. Abdelrazik, A.S. & Al-Sulaiman, F.A. & Saidur, R., 2022. "Feasibility study for the integration of optical filtration and nano-enhanced phase change materials to the conventional PV-based solar systems," Renewable Energy, Elsevier, vol. 187(C), pages 463-483.
    11. Dong, Yan & Han, Han & Wang, Fuqiang & Zhang, Yingjie & Cheng, Ziming & Shi, Xuhang & Yan, Yuying, 2022. "A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method," Renewable Energy, Elsevier, vol. 192(C), pages 606-616.
    12. Pei, Maoqing & Liu, Huawei & Ju, Xinyu & Ju, Xing & Xu, Chao, 2024. "Investigation and optimization of the performance of a spectrum splitting photovoltaic/thermal system using multiple kinds of core-shell nanofluids," Energy, Elsevier, vol. 288(C).
    13. Gu, Meng & Guo, Qi & Lu, Shiliang, 2022. "Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology," Renewable Energy, Elsevier, vol. 191(C), pages 571-579.
    14. Han, Xinyue & Ding, Fan & Huang, Ju & Zhao, Xiaobo, 2023. "Hybrid nanofluid filtered concentrating photovoltaic/thermal-direct contact membrane distillation system for co-production of electricity and freshwater," Energy, Elsevier, vol. 263(PD).
    15. Sun, Yuying & Hao, Yingying & Wang, Dan & Wang, Wei & Deng, Shiming & Qi, Haoran & Xue, Peng, 2022. "A predictive control strategy for electrochromic glazing to balance the visual and thermal environmental requirements: Approach and energy-saving potential assessment," Renewable Energy, Elsevier, vol. 194(C), pages 334-348.
    16. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    17. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    18. Cesar Lucio & Omar Behar & Bassam Dally, 2023. "Techno-Economic Assessment of CPVT Spectral Splitting Technology: A Case Study on Saudi Arabia," Energies, MDPI, vol. 16(14), pages 1-23, July.
    19. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
    20. Abdelrazik, A.S. & Saidur, R. & Al-Sulaiman, F.A., 2021. "Investigation of the performance of a hybrid PV/thermal system using water/silver nanofluid-based optical filter," Energy, Elsevier, vol. 215(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:231-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.