IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1245-d1351701.html
   My bibliography  Save this article

The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union

Author

Listed:
  • Rafał Nagaj

    (Institute of Economics and Finance, University of Szczecin, 71-101 Szczecin, Poland)

  • Bożena Gajdzik

    (Department of Industrial Informatics, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Radosław Wolniak

    (Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland)

  • Wieslaw Wes Grebski

    (Penn State Hazleton, Pennsylvania State University, 76 University Drive, Hazleton, PA 18202-8025, USA)

Abstract

The Green Deal, a cornerstone of the European Union’s climate goals, sets out to achieve a substantial 55% reduction in greenhouse gas emissions by 2030 compared to 1990 levels. The EU’s decarbonization strategies revolve around three pivotal avenues. First, there is a focus on enhancing energy efficiency and decreasing the energy intensity of economies. Second, concerted efforts are made to diminish the reliance on fossil fuels, particularly within industrial sectors. Lastly, there is a deliberate push to augment the share of renewable energy sources in the final energy consumption mix. These measures collectively aim to propel the decarbonization of EU economies, establishing EU member countries as global leaders in implementing these transformative processes. This manuscript seeks to evaluate the efficacy of three primary decarbonization strategies adopted by EU economies, namely the enhancement in energy efficiency, the promotion of renewable energy consumption and the reduction in fossil fuel consumption. The objective is to discern which strategies wield a decisive influence in achieving decarbonization goals across EU countries. The analysis encompasses all 27 member states of the European Union, spanning from 1990 to 2022, with data sourced from reputable outlets, including Eurostat, Our World in Data and the Energy Institute. Research findings underscore that, in the realm of decarbonization policies, statistically significant impacts on carbon dioxide emission reduction are attributable to the strategies of improving energy efficiency and augmenting the share of renewables in energy consumption across almost all EU countries. Conversely, the strategy with the least impact, embraced by a minority of EU member states, revolves around diminishing the share of fossil fuels in primary energy consumption. This approach, while statistically less impactful, is intricately linked with transitioning the economies toward renewable energy sources, thus playing a contributory role in the broader decarbonization landscape. The uniqueness of this research lies not only in its discernment of overarching trends but also in its fervent advocacy for a comprehensive and adaptive approach to EU decarbonization policy. It underscores the enduring significance of prioritizing energy efficiency, endorsing the integration of renewable energy and acknowledging the distinctive dynamics inherent in diverse regions. The study accentuates the necessity for nuanced, region-specific strategies, challenging the conventional wisdom of a uniform approach to decarbonization. In doing so, it accentuates the critical importance of tailoring policies to the varied energy landscapes and transition strategies evident in different EU member states.

Suggested Citation

  • Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1245-:d:1351701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgatzi, Vasiliki V. & Stamboulis, Yeoryios & Vetsikas, Apostolos, 2020. "Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 11-20.
    2. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
    3. Yan, Xiang & Yang, Chao & Zhang, Renfang, 2023. "How does green finance derive the resource efficiency and decarbonization of the economy?," Resources Policy, Elsevier, vol. 85(PB).
    4. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams, 2016. "The Deep Decarbonization Pathways Project (DDPP): insights and emerging issues," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 1-6, June.
    5. Sandrine Mathy & Patrick Criqui & Katharina Knoop & Manfred Fischedick & Sascha Samadi, 2016. "Uncertainty management and the dynamic adjustment of deep decarbonization pathways," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 47-62, June.
    6. Natalya Romasheva & Alina Cherepovitsyna, 2023. "Renewable Energy Sources in Decarbonization: The Case of Foreign and Russian Oil and Gas Companies," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    7. Bożena Gajdzik & Włodzimierz Sroka & Jolita Vveinhardt, 2021. "Energy Intensity of Steel Manufactured Utilising EAF Technology as a Function of Investments Made: The Case of the Steel Industry in Poland," Energies, MDPI, vol. 14(16), pages 1-17, August.
    8. Hübler, Michael & Löschel, Andreas, 2013. "The EU Decarbonisation Roadmap 2050—What way to walk?," Energy Policy, Elsevier, vol. 55(C), pages 190-207.
    9. Fredrik von Malmborg & Peter A. Strachan, 2023. "Advocacy Coalitions and Paths to Policy Change for Promoting Energy Efficiency in European Industry," Energies, MDPI, vol. 16(9), pages 1-21, April.
    10. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Energy Behaviors of Prosumers in Example of Polish Households," Energies, MDPI, vol. 16(7), pages 1-26, March.
    11. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    12. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    13. Steve Pye & Christophe McGlade & Chris Bataille & Gabrial Anandarajah & Amandine Denis-Ryan & Vladimir Potashnikov, 2016. "Exploring national decarbonization pathways and global energy trade flows: a multi-scale analysis," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 92-109, June.
    14. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    15. Alexandros Kafetzis & Michael Bampaou & Giorgos Kardaras & Kyriakos Panopoulos, 2023. "Decarbonization of Former Lignite Regions with Renewable Hydrogen: The Western Macedonia Case," Energies, MDPI, vol. 16(20), pages 1-21, October.
    16. Van Opstal, Wim & Smeets, Anse, 2023. "When do circular business models resolve barriers to residential solar PV adoption? Evidence from survey data in flanders," Energy Policy, Elsevier, vol. 182(C).
    17. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    18. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    19. Jing‐Lin Duanmu & Maoliang Bu & Russell Pittman, 2018. "Does market competition dampen environmental performance? Evidence from China," Strategic Management Journal, Wiley Blackwell, vol. 39(11), pages 3006-3030, November.
    20. Crompton, Paul & Lesourd, Jean-Baptiste, 2008. "Economies of scale in global iron-making," Resources Policy, Elsevier, vol. 33(2), pages 74-82, June.
    21. Rafał Nagaj & Brigita Žuromskaitė, 2023. "Young Travellers and Green Travel in the Post-COVID Era," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    22. Michael Grubb & Fu Sha & Thomas Spencer & Nick Hughes & Zhongxiang Zhang & Paolo Agnolucci, 2015. "A review of Chinese CO 2 emission projections to 2030: the role of economic structure and policy," Climate Policy, Taylor & Francis Journals, vol. 15(sup1), pages 7-39, December.
    23. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    24. Mohamad Issa & Adrian Ilinca & Daniel R. Rousse & Loïc Boulon & Philippe Groleau, 2023. "Renewable Energy and Decarbonization in the Canadian Mining Industry: Opportunities and Challenges," Energies, MDPI, vol. 16(19), pages 1-22, October.
    25. Wang, Zhaohua & Li, Jingyun & Wang, Bo & Hui, Ng Szu & Lu, Bin & Wang, Can & Xu, Shuling & Zhou, Zixuan & Zhang, Bin & Zheng, Yufeng, 2024. "The decarbonization pathway of power system by high-resolution model under different policy scenarios in China," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korneliusz Pylak & Jakub Pizoń & Ewa Łazuka, 2024. "Evolution of Regional Innovation Strategies Towards the Transition to Green Energy in Europe 2014–2027," Energies, MDPI, vol. 17(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Rafał Nagaj & Radosław Wolniak & Dominik Bałaga & Brigita Žuromskaitė & Wiesław Wes Grebski, 2024. "Renewable Energy Share in European Industry: Analysis and Extrapolation of Trends in EU Countries," Energies, MDPI, vol. 17(11), pages 1-38, May.
    2. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Brigita Žuromskaitė-Nagaj & Wieslaw Wes Grebski, 2024. "The Influence of the Global Energy Crisis on Energy Efficiency: A Comprehensive Analysis," Energies, MDPI, vol. 17(4), pages 1-51, February.
    3. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    4. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2023. "Assessment of Energy and Heat Consumption Trends and Forecasting in the Small Consumer Sector in Poland Based on Historical Data," Resources, MDPI, vol. 12(9), pages 1-33, September.
    5. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    6. Spencer, Thomas & Pierfederici, Roberta & Sartor, Oliver & Berghmans, Nicolas & Samadi, Sascha & Fischedick, Manfred & Knoop, Katharina & Pye, Steve & Criqui, Patrick & Mathy, Sandrine & Capros, Pante, 2017. "Tracking sectoral progress in the deep decarbonisation of energy systems in Europe," Energy Policy, Elsevier, vol. 110(C), pages 509-517.
    7. Franck Lecocq & Alain Nadaï & Christophe Cassen, 2022. "Getting models and modellers to inform deep decarbonization strategies," Climate Policy, Taylor & Francis Journals, vol. 22(6), pages 695-710, July.
    8. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    9. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2024. "Diagnosis of the Development of Energy Cooperatives in Poland—A Case Study of a Renewable Energy Cooperative in the Upper Silesian Region," Energies, MDPI, vol. 17(3), pages 1-27, January.
    10. Bożena Gajdzik & Marcin Awdziej & Magdalena Jaciow & Ilona Lipowska & Marcin Lipowski & Grzegorz Szojda & Jolanta Tkaczyk & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2024. "Encouraging Residents to Save Energy by Using Smart Transportation: Incorporating the Propensity to Save Energy into the UTAUT Model," Energies, MDPI, vol. 17(21), pages 1-31, October.
    11. Chris Bataille & Henri Waisman & Michel Colombier & Laura Segafredo & Jim Williams & Frank Jotzo, 2016. "The need for national deep decarbonization pathways for effective climate policy," Climate Policy, Taylor & Francis Journals, vol. 16(sup1), pages 7-26, June.
    12. Frédéric Babonneau & Philippe Thalmann & Marc Vielle, 2018. "Defining deep decarbonization pathways for Switzerland: an economic evaluation," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 1-13, January.
    13. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.
    14. Bożena Gajdzik & Katarzyna Tobór-Osadnik & Radosław Wolniak & Wiesław Wes Grebski, 2024. "European Climate Policy in the Context of the Problem of Methane Emissions from Coal Mines in Poland," Energies, MDPI, vol. 17(10), pages 1-28, May.
    15. Li, Francis G.N. & Bataille, Chris & Pye, Steve & O'Sullivan, Aidan, 2019. "Prospects for energy economy modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art?," Applied Energy, Elsevier, vol. 239(C), pages 991-1002.
    16. Izabela Jonek-Kowalska, 2023. "Motives for the Use of Photovoltaic Installations in Poland against the Background of the Share of Solar Energy in the Structure of Energy Resources in the Developing Economies of Central and Eastern ," Resources, MDPI, vol. 12(8), pages 1-25, July.
    17. Bożena Gajdzik & Magdalena Jaciow & Kinga Hoffmann-Burdzińska & Robert Wolny & Radosław Wolniak & Wiesław Wes Grebski, 2024. "Impact of Economic Awareness on Sustainable Energy Consumption: Results of Research in a Segment of Polish Households," Energies, MDPI, vol. 17(11), pages 1-31, May.
    18. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    19. Fereshteh Mahmoudian & Johnny Jermias, 2022. "The influence of governance structure on the relationship between pay ratio and environmental and social performance," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 2992-3013, November.
    20. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1245-:d:1351701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.