IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5818-d1526021.html
   My bibliography  Save this article

A Study on the Influence of Different Inflow Conditions on the Output Power and Dynamic Response Characteristics of a Variable Pitch Wind Turbine Structure

Author

Listed:
  • Daorina Bao

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010010, China)

  • Zhongyu Shi

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010010, China)

  • Chengze Li

    (Department of Mechanics, Inner Mongolia Open University, Hohhot 010010, China)

  • Aoxiang Jiang

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010010, China)

  • Qingsong Han

    (School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010010, China)

  • Yongshui Luo

    (Yunda Energy Technology Group Co., Ltd., Hangzhou 311106, China)

  • Shaohua Zhang

    (Inner Mongolia Hengdong Group Huilong Coal Co., Ltd., Hohhot 010010, China)

Abstract

This paper introduces a novel pitch adjustment device applicable to small wind turbines. To validate its feasibility under high wind speeds and analyze the impact of pitch angle on the power output characteristics of small wind turbines, a prototype model was manufactured for wind tunnel experiments. Additionally, we conducted simulations to analyze the stress and displacement responses of key components under uniform airflow, shear airflow, and Extreme Operated Gust conditions. The numerical simulation results were compared with experimental results based on actual measurement points in the wind tunnel experiment, demonstrating that the simulation data accurately reflect the experimental test results, with an overall discrepancy of around 10%, thereby validating the accuracy of the load and constraint settings in the transient dynamics analysis. This study found that, as the pitch angle increased, the structural dynamic response of key wind turbine components under uniform airflow conditions exhibited a decreasing trend, which was proportional to wind speed. Under shear airflow conditions, the response of key components was positively correlated with the shear index, while Extreme Operated Gust significantly increased the amplitude of the response fluctuations. Furthermore, this research revealed that, with an increase in pitch angle, the maximum stress value of the gear under uniform airflow conditions decreased from 27.42 MPa to 7.64 MPa, a reduction of 72.1%. Under shear airflow conditions, the root stress of the gear decreased from 14.441 MPa to 8.879 MPa, a reduction of 49.60%. Under Extreme Operated Gust conditions, the maximum stress of the gear decreased from 17.82 MPa to 15.18 MPa, a reduction of 22.99%.

Suggested Citation

  • Daorina Bao & Zhongyu Shi & Chengze Li & Aoxiang Jiang & Qingsong Han & Yongshui Luo & Shaohua Zhang, 2024. "A Study on the Influence of Different Inflow Conditions on the Output Power and Dynamic Response Characteristics of a Variable Pitch Wind Turbine Structure," Energies, MDPI, vol. 17(23), pages 1-34, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5818-:d:1526021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
    2. Wang, Wen-Xue & Matsubara, Terutake & Hu, Junfeng & Odahara, Satoru & Nagai, Tomoyuki & Karasutani, Takashi & Ohya, Yuji, 2015. "Experimental investigation into the influence of the flanged diffuser on the dynamic behavior of CFRP blade of a shrouded wind turbine," Renewable Energy, Elsevier, vol. 78(C), pages 386-397.
    3. Peng Wang & Daorina Bao & Mingzhi Zhao & Zhongyu Shi & Fan Gao & Feng Han, 2023. "The Design, Analysis, and Optimization of a New Pitch Mechanism for Small Wind Turbines," Energies, MDPI, vol. 16(18), pages 1-25, September.
    4. Haojie Kang & Bofeng Xu & Xiang Shen & Zhen Li & Xin Cai & Zhiqiang Hu, 2023. "Comparison of Blade Aeroelastic Responses between Upwind and Downwind of 10 MW Wind Turbines under the Shear Wind Condition," Energies, MDPI, vol. 16(6), pages 1-13, March.
    5. Yu-Jen Chen & Y. C. Shiah, 2016. "Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley," Energies, MDPI, vol. 9(5), pages 1-13, May.
    6. Rocha, P.A. Costa & Carneiro de Araujo, J.W. & Lima, R.J. Pontes & Vieira da Silva, M.E. & Albiero, D. & de Andrade, C.F. & Carneiro, F.O.M., 2018. "The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments," Energy, Elsevier, vol. 148(C), pages 169-178.
    7. Santo, G. & Peeters, M. & Van Paepegem, W. & Degroote, J., 2019. "Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation," Renewable Energy, Elsevier, vol. 140(C), pages 212-226.
    8. Li, Y. & Castro, A.M. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2015. "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence," Renewable Energy, Elsevier, vol. 76(C), pages 338-361.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
    2. Daorina Bao & Aoxiang Jiang & Chengze Li & Zhongyu Shi & Qingsong Han & Yongshui Luo & Shaohua Zhang, 2024. "The Study of Structural Dynamic Response of Wind Turbine Blades under Different Inflow Conditions for the Novel Variable-Pitch Wind Turbine," Energies, MDPI, vol. 17(16), pages 1-22, August.
    3. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
    4. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    5. Giovanni Ferrara & Alessandro Bianchini, 2021. "Special Issue “Numerical Simulation of Wind Turbines”," Energies, MDPI, vol. 14(6), pages 1-2, March.
    6. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    7. Ahmad Fazlizan & Wen Tong Chong & Sook Yee Yip & Wooi Ping Hew & Sin Chew Poh, 2015. "Design and Experimental Analysis of an Exhaust Air Energy Recovery Wind Turbine Generator," Energies, MDPI, vol. 8(7), pages 1-19, June.
    8. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    9. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    10. Galih Bangga, 2022. "Progress and Outlook in Wind Energy Research," Energies, MDPI, vol. 15(18), pages 1-5, September.
    11. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    12. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    13. Rizwan Haider & Xin Li & Wei Shi & Zaibin Lin & Qing Xiao & Haisheng Zhao, 2024. "Review of Computational Fluid Dynamics in the Design of Floating Offshore Wind Turbines," Energies, MDPI, vol. 17(17), pages 1-37, August.
    14. de Oliveira, Marielle & Puraca, Rodolfo C. & Carmo, Bruno S., 2023. "A study on the influence of the numerical scheme on the accuracy of blade-resolved simulations employed to evaluate the performance of the NREL 5 MW wind turbine rotor in full scale," Energy, Elsevier, vol. 283(C).
    15. Niels Pynaert & Thomas Haas & Jolan Wauters & Guillaume Crevecoeur & Joris Degroote, 2023. "Wing Deformation of an Airborne Wind Energy System in Crosswind Flight Using High-Fidelity Fluid–Structure Interaction," Energies, MDPI, vol. 16(2), pages 1-16, January.
    16. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    17. Zheng, Jiancai & Wang, Nina & Wan, Decheng & Strijhak, Sergei, 2023. "Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model," Applied Energy, Elsevier, vol. 330(PB).
    18. Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
    19. Jun-Feng Hu & Wen-Xue Wang, 2015. "Upgrading a Shrouded Wind Turbine with a Self-Adaptive Flanged Diffuser," Energies, MDPI, vol. 8(6), pages 1-19, June.
    20. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5818-:d:1526021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.