IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i5p353-d69651.html
   My bibliography  Save this article

Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley

Author

Listed:
  • Yu-Jen Chen

    (Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan)

  • Y. C. Shiah

    (Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan 70101, Taiwan)

Abstract

The present work is to design a passive pitch-control mechanism for small horizontal axis wind turbine (HAWT) to generate stable power at high wind speeds. The mechanism uses a disk pulley as an actuator to passively adjust the pitch angle of blades by centrifugal force. For this design, aerodynamic braking is caused by the adjustment of pitch angles at high wind speeds. As a marked advantage, this does not require mechanical brakes that would incur electrical burn-out and structural failure under high speed rotation. This can ensure the survival of blades and generator in sever operation environments. In this paper, the analysis uses blade element momentum theory (BEMT) to develop graphical user interface software to facilitate the performance assessment of the small-scale HAWT using passive pitch control (PPC). For verification, the HAWT system was tested in a full-scale wind tunnel for its aerodynamic performance. At low wind speeds, this system performed the same as usual, yet at high wind speeds, the equipped PPC system can effectively reduce the rotational speed to generate stable power.

Suggested Citation

  • Yu-Jen Chen & Y. C. Shiah, 2016. "Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley," Energies, MDPI, vol. 9(5), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:353-:d:69651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/5/353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/5/353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mc Garrigle, E.V. & Leahy, P.G., 2015. "Quantifying the value of improved wind energy forecasts in a pool-based electricity market," Renewable Energy, Elsevier, vol. 80(C), pages 517-524.
    2. Gillenwater, Michael & Lu, Xi & Fischlein, Miriam, 2014. "Additionality of wind energy investments in the U.S. voluntary green power market," Renewable Energy, Elsevier, vol. 63(C), pages 452-457.
    3. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    4. Choudhry, Amanullah & Arjomandi, Maziar & Kelso, Richard, 2016. "Methods to control dynamic stall for wind turbine applications," Renewable Energy, Elsevier, vol. 86(C), pages 26-37.
    5. Browne, Oliver & Poletti, Stephen & Young, David, 2015. "How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?," Energy Policy, Elsevier, vol. 87(C), pages 17-27.
    6. Xie, Wei & Zeng, Pan & Lei, Liping, 2015. "Wind tunnel experiments for innovative pitch regulated blade of horizontal axis wind turbine," Energy, Elsevier, vol. 91(C), pages 1070-1080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Wang & Daorina Bao & Mingzhi Zhao & Zhongyu Shi & Fan Gao & Feng Han, 2023. "The Design, Analysis, and Optimization of a New Pitch Mechanism for Small Wind Turbines," Energies, MDPI, vol. 16(18), pages 1-25, September.
    2. Md Rasel Sarkar & Sabariah Julai & Chong Wen Tong & Moslem Uddin & M.F. Romlie & GM Shafiullah, 2020. "Hybrid Pitch Angle Controller Approaches for Stable Wind Turbine Power under Variable Wind Speed," Energies, MDPI, vol. 13(14), pages 1-19, July.
    3. Yu-Ting Wu & Chang-Yu Lin & Che-Ming Hsu, 2020. "An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios," Energies, MDPI, vol. 13(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Zhu, Chengyong & Qiu, Yingning & Wang, Tongguang, 2021. "Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: A comparative study," Energy, Elsevier, vol. 222(C).
    3. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
    4. Davis, Dominic & Brear, Michael J., 2024. "Impact of short-term wind forecast accuracy on the performance of decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 130(C).
    5. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    6. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    7. Dehghani, Hamed & Vahidi, Behrooz & Hosseinian, Seyed Hossein, 2017. "Wind farms participation in electricity markets considering uncertainties," Renewable Energy, Elsevier, vol. 101(C), pages 907-918.
    8. Di Cosmo, Valeria & Malaguzzi Valeri, Laura, 2018. "Wind, storage, interconnection and the cost of electricity generation," Energy Economics, Elsevier, vol. 69(C), pages 1-18.
    9. Zhong, Junwei & Li, Jingyin & Liu, Huizhong, 2023. "Dynamic mode decomposition analysis of flow separation control on wind turbine airfoil using leading−edge rod," Energy, Elsevier, vol. 268(C).
    10. Zhiqiang, Li & Yunke, Wu & Jie, Hong & Zhihong, Zhang & Wenqi, Chen, 2018. "The study on performance and aerodynamics of micro counter-rotating HAWT," Energy, Elsevier, vol. 161(C), pages 939-954.
    11. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    12. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    13. Zhu, Chengyong & Chen, Jie & Wu, Jianghai & Wang, Tongguang, 2019. "Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators," Energy, Elsevier, vol. 189(C).
    14. Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge," Energy, Elsevier, vol. 143(C), pages 1107-1124.
    15. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    16. Fathabadi, Hassan, 2016. "Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems," Energy, Elsevier, vol. 116(P1), pages 402-416.
    17. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    18. Hung, Tzu-Chieh & Chong, John & Chan, Kuei-Yuan, 2017. "Reducing uncertainty accumulation in wind-integrated electrical grid," Energy, Elsevier, vol. 141(C), pages 1072-1083.
    19. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Aerodynamic analysis for different operating states of floating offshore wind turbine induced by pitching movement," Energy, Elsevier, vol. 285(C).
    20. Jaunet, V. & Braud, C., 2018. "Experiments on lift dynamics and feedback control of a wind turbine blade section," Renewable Energy, Elsevier, vol. 126(C), pages 65-78.
    21. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    22. Gorle, J.M.R. & Chatellier, L. & Pons, F. & Ba, M., 2019. "Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 363-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:5:p:353-:d:69651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.