IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp964-974.html
   My bibliography  Save this article

Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section

Author

Listed:
  • Zhuang, Chen
  • Yang, Gang
  • Zhu, Yawei
  • Hu, Dean

Abstract

Application of Morphed Trailing-Edge Flap (MTEF) can significantly reduce the excessive loads that cause damage of blades and surrounding components in wind turbine. The present paper investigates the effect of MTEF on the aerodynamic load control of a large-scale wind turbine blade. Three design parameters that control MTEF kinematics, such as deflection length, amplitude and phase shift, are analyzed in detail by a validated Computational Fluid Dynamic (CFD) model, in which a specially-designed mesh update method is adopted. Results show that, compared with fully rigid airfoil, the morphed airfoil exhibits an excellent load control capability owing to the appropriate change of aft effective camber as deflection motion of MTEF, which significantly alters the pressure distribution and air flow. Furthermore, the performances are linearly improved with increasing MTEF deflection length, wherein every 0.1c increase in length results in the percentage variation of CL, min (+45%), CL, max (−3%), CD, max (−5%) and CL/CD (+30%). Whereas the improved performance due to the increase of deflection amplitude shows a reducing trend, and an oversize deflection amplitude (greater than βamp = 10°) leads to the depravation of aerodynamic efficiency. Moreover, the analysis of deflection phase shift suggests that a slight phase–lag is beneficial to stabilize the aerodynamic load exerted on wind turbine blade. Especially, the lift coefficient fluctuation (CL, max−CL, min) for the phase-lag case of φ = 1/8π has reduced by about 50% while the cycle-averaged lift coefficient has increased by 16.67% as compared to the fully rigid airfoil. The results of this paper will help guide future development and application of MTEF in practice.

Suggested Citation

  • Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:964-974
    DOI: 10.1016/j.renene.2019.10.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119315733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    2. MacPhee, David W. & Beyene, Asfaw, 2015. "Experimental and Fluid Structure Interaction analysis of a morphing wind turbine rotor," Energy, Elsevier, vol. 90(P1), pages 1055-1065.
    3. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    4. Kamliya Jawahar, Hasan & Ai, Qing & Azarpeyvand, Mahdi, 2018. "Experimental and numerical investigation of aerodynamic performance for airfoils with morphed trailing edges," Renewable Energy, Elsevier, vol. 127(C), pages 355-367.
    5. Gao, Linyue & Zhang, Hui & Liu, Yongqian & Han, Shuang, 2015. "Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines," Renewable Energy, Elsevier, vol. 76(C), pages 303-311.
    6. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    7. Rezaeiha, Abdolrahim & Pereira, Ricardo & Kotsonis, Marios, 2017. "Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large Horizontal Axis Wind turbine," Renewable Energy, Elsevier, vol. 114(PB), pages 904-916.
    8. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    9. Gharali, Kobra & Gharaei, Eshagh & Soltani, M. & Raahemifar, Kaamran, 2018. "Reduced frequency effects on combined oscillations, angle of attack and free stream oscillations, for a wind turbine blade element," Renewable Energy, Elsevier, vol. 115(C), pages 252-259.
    10. Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
    11. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    12. Sang, Le Quang & Takao, Maeda & Kamada, Yasunari & Li, Qing'an, 2017. "Experimental investigation of the cyclic pitch control on a horizontal axis wind turbine in diagonal inflow wind condition," Energy, Elsevier, vol. 134(C), pages 269-278.
    13. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    14. Zhang, Mingming & Li, Xin & Xu, Jianzhong, 2019. "Smart control of fatigue loads on a floating wind turbine with a tension-leg-platform," Renewable Energy, Elsevier, vol. 134(C), pages 745-756.
    15. Ai, Qing & Weaver, Paul M. & Barlas, Thanasis K. & Olsen, Anders S. & Madsen, Helge A. & Andersen, Tom L., 2019. "Field testing of morphing flaps on a wind turbine blade using an outdoor rotating rig," Renewable Energy, Elsevier, vol. 133(C), pages 53-65.
    16. Santo, G. & Peeters, M. & Van Paepegem, W. & Degroote, J., 2019. "Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation," Renewable Energy, Elsevier, vol. 140(C), pages 212-226.
    17. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    18. Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2015. "Parameter study of sizing and placement of deformable trailing edge flap on blade fatigue load reduction," Renewable Energy, Elsevier, vol. 77(C), pages 217-226.
    19. Zhang, Wenguang & Bai, Xuejian & Wang, Yifeng & Han, Yue & Hu, Yong, 2018. "Optimization of sizing parameters and multi-objective control of trailing edge flaps on a smart rotor," Renewable Energy, Elsevier, vol. 129(PA), pages 75-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhen & Qu, Hengliang, 2022. "Numerical study on a coupled-pitching flexible hydrofoil under the semi-passive mode," Renewable Energy, Elsevier, vol. 189(C), pages 339-358.
    2. Sun, Jinjing & Sun, Xiaojing & Huang, Diangui, 2020. "Aerodynamics of vertical-axis wind turbine with boundary layer suction – Effects of suction momentum," Energy, Elsevier, vol. 209(C).
    3. Tingrui Liu & Ailing Gong & Changle Song & Yuehua Wang, 2020. "Sliding Mode Control of Active Trailing-Edge Flap Based on Adaptive Reaching Law and Minimum Parameter Learning of Neural Networks," Energies, MDPI, vol. 13(5), pages 1-21, February.
    4. Azael Duran Castillo & Juan C. Jauregui-Correa & Francisco Herbert & Krystel K. Castillo-Villar & Jesus Alejandro Franco & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno & Alfredo Alcayd, 2021. "The Effect of a Flexible Blade for Load Alleviation in Wind Turbines," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    2. Ai, Qing & Weaver, Paul M. & Barlas, Thanasis K. & Olsen, Anders S. & Madsen, Helge A. & Andersen, Tom L., 2019. "Field testing of morphing flaps on a wind turbine blade using an outdoor rotating rig," Renewable Energy, Elsevier, vol. 133(C), pages 53-65.
    3. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    4. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.
    5. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    6. Zhang, Wenguang & Bai, Xuejian & Wang, Yifeng & Han, Yue & Hu, Yong, 2018. "Optimization of sizing parameters and multi-objective control of trailing edge flaps on a smart rotor," Renewable Energy, Elsevier, vol. 129(PA), pages 75-91.
    7. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    8. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    9. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    10. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    11. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    12. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    13. Vasel-Be-Hagh, Ahmadreza & Archer, Cristina L., 2017. "Wind farm hub height optimization," Applied Energy, Elsevier, vol. 195(C), pages 905-921.
    14. Lim, Chae Wook, 2019. "A demonstration on the similarity of pitch response between MW wind turbine and small-scale simulator," Renewable Energy, Elsevier, vol. 144(C), pages 68-76.
    15. Ali Awada & Rafic Younes & Adrian Ilinca, 2021. "Review of Vibration Control Methods for Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-35, May.
    16. Fatehi, Mostafa & Nili-Ahmadabadi, Mahdi & Nematollahi, Omid & Minaiean, Ali & Kim, Kyung Chun, 2019. "Aerodynamic performance improvement of wind turbine blade by cavity shape optimization," Renewable Energy, Elsevier, vol. 132(C), pages 773-785.
    17. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    18. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    19. Alejandro Ballesteros-Coll & Unai Fernandez-Gamiz & Iñigo Aramendia & Ekaitz Zulueta & José Antonio Ramos-Hernanz, 2020. "Cell-Set Modelling for a Microtab Implementation on a DU91W(2)250 Airfoil," Energies, MDPI, vol. 13(24), pages 1-15, December.
    20. López-Queija, Javier & Robles, Eider & Jugo, Josu & Alonso-Quesada, Santiago, 2022. "Review of control technologies for floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:964-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.