LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128840
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
- Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
- Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
- Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge," Energy, Elsevier, vol. 143(C), pages 1107-1124.
- Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
- Santo, G. & Peeters, M. & Van Paepegem, W. & Degroote, J., 2019. "Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation," Renewable Energy, Elsevier, vol. 140(C), pages 212-226.
- Dose, B. & Rahimi, H. & Herráez, I. & Stoevesandt, B. & Peinke, J., 2018. "Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD," Renewable Energy, Elsevier, vol. 129(PA), pages 591-605.
- Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2019. "Effect of different atmospheric boundary layers on the wake characteristics of NREL phase VI wind turbine," Renewable Energy, Elsevier, vol. 130(C), pages 1185-1197.
- Liu, Zhenqing & Wang, Yize & Nyangi, Patrice & Zhu, Zhiwen & Hua, Xugang, 2021. "Proposal of a novel GPU-accelerated lifetime optimization method for onshore wind turbine dampers under real wind distribution," Renewable Energy, Elsevier, vol. 168(C), pages 516-543.
- Yu, Dong Ok & Kwon, Oh Joon, 2014. "Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method," Renewable Energy, Elsevier, vol. 70(C), pages 184-196.
- Li, Y. & Castro, A.M. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2015. "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence," Renewable Energy, Elsevier, vol. 76(C), pages 338-361.
- Sayed, M. & Klein, L. & Lutz, Th. & Krämer, E., 2019. "The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 140(C), pages 304-318.
- Zhu, Chengyong & Chen, Jie & Qiu, Yingning & Wang, Tongguang, 2021. "Numerical investigation into rotational augmentation with passive vortex generators on the NREL Phase VI blade," Energy, Elsevier, vol. 223(C).
- Lee, Hak Min & Kwon, Oh Joon, 2020. "Performance improvement of horizontal axis wind turbines by aerodynamic shape optimization including aeroealstic deformation," Renewable Energy, Elsevier, vol. 147(P1), pages 2128-2140.
- Ye, Maokun & Chen, Hamn-Ching & Koop, Arjen, 2023. "High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine," Energy, Elsevier, vol. 265(C).
- Lee, Jae-Hoon & Lee, Young-Tae & Lim, Hee-Chang, 2016. "Effect of twist angle on the performance of Savonius wind turbine," Renewable Energy, Elsevier, vol. 89(C), pages 231-244.
- Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
- Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
- Ji, Baifeng & Zhong, Kuanwei & Xiong, Qian & Qiu, Penghui & Zhang, Xu & Wang, Liang, 2022. "CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model," Energy, Elsevier, vol. 249(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guoqiang Gao & Hongsheng Shu & Zixin Yi & Shuyi Yang & Juchuan Dai & Fan Zhang, 2024. "A Scaled Numerical Simulation Model for Structural Analysis of Large Wind Turbine Blade," Energies, MDPI, vol. 17(19), pages 1-19, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
- Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
- Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
- Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
- Huanqiang, Zhang & Xiaoxia, Gao & Hongkun, Lu & Qiansheng, Zhao & Xiaoxun, Zhu & Yu, Wang & Fei, Zhao, 2024. "Investigation of a new 3D wake model of offshore floating wind turbines subjected to the coupling effects of wind and wave," Applied Energy, Elsevier, vol. 365(C).
- Yang, Haoze & Ge, Mingwei & Abkar, Mahdi & Yang, Xiang I.A., 2022. "Large-eddy simulation study of wind turbine array above swell sea," Energy, Elsevier, vol. 256(C).
- Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
- Bayron, Paul & Kelso, Richard & Chin, Rey, 2024. "Experimental investigation of tip-speed-ratio influence on horizontal-axis wind turbine wake dynamics," Renewable Energy, Elsevier, vol. 225(C).
- Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
- Liu, Songyue & Li, Qiusheng & Lu, Bin & He, Junyi, 2024. "Analysis of NREL-5MW wind turbine wake under varied incoming turbulence conditions," Renewable Energy, Elsevier, vol. 224(C).
- Umberto Ciri & Giovandomenico Petrolo & Maria Vittoria Salvetti & Stefano Leonardi, 2017. "Large-Eddy Simulations of Two In-Line Turbines in a Wind Tunnel with Different Inflow Conditions," Energies, MDPI, vol. 10(6), pages 1-23, June.
- Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
- Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
- Della Posta, Giacomo & Leonardi, Stefano & Bernardini, Matteo, 2022. "A two-way coupling method for the study of aeroelastic effects in large wind turbines," Renewable Energy, Elsevier, vol. 190(C), pages 971-992.
- Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
- Li, Liang & Liu, Yuanchuan & Yuan, Zhiming & Gao, Yan, 2018. "Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines," Energy, Elsevier, vol. 157(C), pages 379-390.
- Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
- Win Naung, Shine & Rahmati, Mohammad & Farokhi, Hamed, 2021. "Nonlinear frequency domain solution method for aerodynamic and aeromechanical analysis of wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 66-81.
- Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.
- Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
More about this item
Keywords
LES simulation; Wind turbine; Aerodynamic characterises; Fluid-structure interaction; Blade and tower flexibility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s036054422302234x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.