Wing Deformation of an Airborne Wind Energy System in Crosswind Flight Using High-Fidelity Fluid–Structure Interaction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Eijkelhof, Dylan & Schmehl, Roland, 2022. "Six-degrees-of-freedom simulation model for future multi-megawatt airborne wind energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 137-150.
- Mojtaba Kheiri & Samson Victor & Sina Rangriz & Mher M. Karakouzian & Frederic Bourgault, 2022. "Aerodynamic Performance and Wake Flow of Crosswind Kite Power Systems," Energies, MDPI, vol. 15(7), pages 1-25, March.
- Santo, G. & Peeters, M. & Van Paepegem, W. & Degroote, J., 2019. "Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation," Renewable Energy, Elsevier, vol. 140(C), pages 212-226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hongbin Zhu & Xiang Gao & Lei Zhao & Xiaoshun Zhang, 2023. "Decomposition-Based Multi-Classifier-Assisted Evolutionary Algorithm for Bi-Objective Optimal Wind Farm Energy Capture," Energies, MDPI, vol. 16(9), pages 1-22, April.
- Mahdi Erfanian Nakhchi & Shine Win Naung & Mohammad Rahmati, 2023. "Direct Numerical Simulations of Turbulent Flow over Low-Pressure Turbine Blades with Aeroelastic Vibrations and Inflow Wakes," Energies, MDPI, vol. 16(6), pages 1-21, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
- Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
- Daorina Bao & Zhongyu Shi & Chengze Li & Aoxiang Jiang & Qingsong Han & Yongshui Luo & Shaohua Zhang, 2024. "A Study on the Influence of Different Inflow Conditions on the Output Power and Dynamic Response Characteristics of a Variable Pitch Wind Turbine Structure," Energies, MDPI, vol. 17(23), pages 1-34, November.
- Antonio Crespo, 2023. "Computational Fluid Dynamic Models of Wind Turbine Wakes," Energies, MDPI, vol. 16(4), pages 1-3, February.
- Arciuolo, Thomas F. & Faezipour, Miad, 2022. "Yellowstone Caldera Volcanic Power Generation Facility: A new engineering approach for harvesting emission-free green volcanic energy on a national scale," Renewable Energy, Elsevier, vol. 198(C), pages 415-425.
- Zhuang, Chen & Yang, Gang & Zhu, Yawei & Hu, Dean, 2020. "Effect of morphed trailing-edge flap on aerodynamic load control for a wind turbine blade section," Renewable Energy, Elsevier, vol. 148(C), pages 964-974.
- Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
- Dylan Eijkelhof & Gabriel Buendía & Roland Schmehl, 2023. "Low- and High-Fidelity Aerodynamic Simulations of Box Wing Kites for Airborne Wind Energy Applications," Energies, MDPI, vol. 16(7), pages 1-19, March.
- Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
- Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
- Rishikesh Joshi & Michiel Kruijff & Roland Schmehl, 2023. "Value-Driven System Design of Utility-Scale Airborne Wind Energy," Energies, MDPI, vol. 16(4), pages 1-19, February.
- Kangqi Tian & Li Song & Yongyan Chen & Xiaofeng Jiao & Rui Feng & Rui Tian, 2022. "Stress Coupling Analysis and Failure Damage Evaluation of Wind Turbine Blades during Strong Winds," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Jiang, Wei & Gao, Xu & Hu, Xiaodan & Fang, Duokui & Chen, Tao & Hou, Youmin, 2024. "Performance potential of fully-passive airborne wind energy system based on flapping airfoil," Energy, Elsevier, vol. 306(C).
More about this item
Keywords
airborne wind energy; fluid–structure interaction; computational fluid dynamics; Chimera;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:602-:d:1024911. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.