IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v330y2023ipbs030626192201618x.html
   My bibliography  Save this article

Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model

Author

Listed:
  • Zheng, Jiancai
  • Wang, Nina
  • Wan, Decheng
  • Strijhak, Sergei

Abstract

With the economic considerations of wind power generation, blades of wind turbines are gradually becoming longer and more flexible. Therefore, it is necessary to research the influence of coupling aerodynamic and elastic structure of blades of wind turbines. Moreover, in a wind farm, the turbulent wind is generated by the irregular movement of the atmosphere, which makes the elastic deformations of blades and the complex wake interference effect between wind turbines. Therefore, the coupled aeroelastic performance of the blade is applied to analyze the interaction of the wake flow field of two tandem wind turbines based on the elastic actuator line model and the Euler-Bernoulli beam theory. Firstly, the correctness of the coupled aeroelastic model is illustrated by comparing the aeroelastic response with OpenFAST software. Secondly, the influence of aeroelastic performances is researched on the structural deformations of blades. It is found that the aerodynamic power and thrust decrease after considering the deformations of blades. Furthermore, the interference effect on the thrust is more evident than aerodynamic power. Thirdly, the far wake region is affected apparently when the deformations of blades are taken into consideration, which causes the tip vortex interference phenomenon to delay. Finally, compared with the uniform inflow condition, the displacement and speed of the deformations of the blades are both increased under the turbulent inflow condition. Meanwhile, the disturbance of the wake vortex in the far wake region by the turbulent wind is stronger. Besides, by comparing the differences between the four vortex identification methods, it is significant that the ΩR method can better capture the vortex system behind the rotor plane without manual intervention threshold selection. The vortex structure also represents the vorticity of the wake vortex evolution.

Suggested Citation

  • Zheng, Jiancai & Wang, Nina & Wan, Decheng & Strijhak, Sergei, 2023. "Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model," Applied Energy, Elsevier, vol. 330(PB).
  • Handle: RePEc:eee:appene:v:330:y:2023:i:pb:s030626192201618x
    DOI: 10.1016/j.apenergy.2022.120361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201618X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    2. Xu Ning & Decheng Wan, 2019. "LES Study of Wake Meandering in Different Atmospheric Stabilities and Its Effects on Wind Turbine Aerodynamics," Sustainability, MDPI, vol. 11(24), pages 1-26, December.
    3. Borg, Michael & Collu, Maurizio & Kolios, Athanasios, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part II: Mooring line and structural dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1226-1234.
    4. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2019. "Improving CFD wind farm simulations incorporating wind direction uncertainty," Renewable Energy, Elsevier, vol. 133(C), pages 1011-1023.
    6. Ducoin, A. & Shadloo, M.S. & Roy, S., 2017. "Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades," Renewable Energy, Elsevier, vol. 105(C), pages 374-385.
    7. Dose, B. & Rahimi, H. & Herráez, I. & Stoevesandt, B. & Peinke, J., 2018. "Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD," Renewable Energy, Elsevier, vol. 129(PA), pages 591-605.
    8. Til Kristian Vrana & Damian Flynn & Emilio Gomez‐Lazaro & Juha Kiviluoma & Davy Marcel & Nicolaos Cutululis & J. Charles Smith, 2018. "Wind power within European grid codes: Evolution, status and outlook," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(3), May.
    9. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    10. Meng, Hang & Lien, Fue-Sang & Li, Li, 2018. "Elastic actuator line modelling for wake-induced fatigue analysis of horizontal axis wind turbine blade," Renewable Energy, Elsevier, vol. 116(PA), pages 423-437.
    11. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    12. Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
    13. Ederer, Nikolaus, 2014. "The right size matters: Investigating the offshore wind turbine market equilibrium," Energy, Elsevier, vol. 68(C), pages 910-921.
    14. Jie Tian & Dao Zhou & Chi Su & Mohsen Soltani & Zhe Chen & Frede Blaabjerg, 2017. "Wind Turbine Power Curve Design for Optimal Power Generation in Wind Farms Considering Wake Effect," Energies, MDPI, vol. 10(3), pages 1-19, March.
    15. Li, Y. & Castro, A.M. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2015. "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence," Renewable Energy, Elsevier, vol. 76(C), pages 338-361.
    16. Sang Lee & Peter Vorobieff & Svetlana Poroseva, 2018. "Interaction of Wind Turbine Wakes under Various Atmospheric Conditions," Energies, MDPI, vol. 11(6), pages 1-15, June.
    17. Yang Huang & Decheng Wan, 2019. "Investigation of Interference Effects Between Wind Turbine and Spar-Type Floating Platform Under Combined Wind-Wave Excitation," Sustainability, MDPI, vol. 12(1), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhiguo & Gao, Zhiying & Dai, Yuanjun & Wen, Caifeng & Zhang, Liru & Wang, Jianwen, 2023. "Unsteady aeroelastic performance analysis for large-scale megawatt wind turbines based on a novel aeroelastic coupling model," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
    3. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    4. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    5. Della Posta, Giacomo & Leonardi, Stefano & Bernardini, Matteo, 2022. "A two-way coupling method for the study of aeroelastic effects in large wind turbines," Renewable Energy, Elsevier, vol. 190(C), pages 971-992.
    6. Hornshøj-Møller, Simon D. & Nielsen, Peter D. & Forooghi, Pourya & Abkar, Mahdi, 2021. "Quantifying structural uncertainties in Reynolds-averaged Navier–Stokes simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 164(C), pages 1550-1558.
    7. Meng, Hang & Lien, Fue-Sang & Yee, Eugene & Shen, Jingfang, 2020. "Modelling of anisotropic beam for rotating composite wind turbine blade by using finite-difference time-domain (FDTD) method," Renewable Energy, Elsevier, vol. 162(C), pages 2361-2379.
    8. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    9. Cheng, Biyi & Du, Jianjun & Yao, Yingxue, 2022. "Machine learning methods to assist structure design and optimization of Dual Darrieus Wind Turbines," Energy, Elsevier, vol. 244(PA).
    10. Bayati, Ilmas & Foletti, Stefano & Tarsitano, Davide & Belloli, Marco, 2018. "A reference open data vertical axis wind turbine, with individual pitch control, for code validation purposes," Renewable Energy, Elsevier, vol. 115(C), pages 711-720.
    11. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    13. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    14. Cheng, Zhengshun & Madsen, Helge Aagaard & Gao, Zhen & Moan, Torgeir, 2017. "A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines," Renewable Energy, Elsevier, vol. 107(C), pages 604-619.
    15. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    16. Vergaerde, Antoine & De Troyer, Tim & Standaert, Lieven & Kluczewska-Bordier, Joanna & Pitance, Denis & Immas, Alexandre & Silvert, Frédéric & Runacres, Mark C., 2020. "Experimental validation of the power enhancement of a pair of vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 181-187.
    17. Win Naung, Shine & Nakhchi, Mahdi Erfanian & Rahmati, Mohammad, 2021. "High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method," Renewable Energy, Elsevier, vol. 174(C), pages 984-1005.
    18. Lei, Hang & Su, Jie & Bao, Yan & Chen, Yaoran & Han, Zhaolong & Zhou, Dai, 2019. "Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms," Energy, Elsevier, vol. 166(C), pages 471-489.
    19. Borg, Michael & Collu, Maurizio, 2015. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 296-310.
    20. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:330:y:2023:i:pb:s030626192201618x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.