IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3620-d1130157.html
   My bibliography  Save this article

Application of an NDIR Sensor System Developed for Early Thermal Runaway Warning of Automotive Batteries

Author

Listed:
  • Yulu Han

    (State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
    GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
    General Research Institute for Nonferrous Metals, Beijing 100088, China
    These authors contributed equally to this work.)

  • Yongmin Zhao

    (State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
    GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China
    These authors contributed equally to this work.)

  • Anjie Ming

    (State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
    GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China)

  • Yanyan Fang

    (China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China)

  • Sheng Fang

    (China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China)

  • Shansong Bi

    (China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China)

  • Jiezhi Chen

    (School of Information Science and Engineering, Shandong University, Qingdao 266237, China)

  • Ran Xu

    (China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China)

  • Feng Wei

    (State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
    GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China)

  • Changhui Mao

    (State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co., Ltd., Beijing 100088, China
    GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, China)

Abstract

This paper proposes to apply a newly developed Non-Dispersive Infrared Spectroscopy (NDIR) gas sensing system composed of pyroelectric infrared detectors to monitor the thermal runaway (TR) process of lithium-ion batteries in real time and achieve an early warning system for the battery TR process. The new Electrical Vehicle Safety—Global Technical Regulation (EVS-GTR) requires that a warning be provided to passengers at least five minutes before a serious incident. The experimental results indicate that carbon dioxide and methane gas were detected during the overcharge test of the automotive battery, and the target gas was detected 25 s in advance before the battery TR when the battery vent was closed. In order to further explore the battery TR mechanism, an experiment was carried out using the battery sample with the battery vent opened. The target gas was detected about 580 s before the battery temperature reached the common alarm temperature (60 °C) of the battery management system (BMS). In this study, the beneficial effects of NDIR gas sensors in the field of thermal runaway warnings for automotive batteries were demonstrated and showed great application prospects and commercial value.

Suggested Citation

  • Yulu Han & Yongmin Zhao & Anjie Ming & Yanyan Fang & Sheng Fang & Shansong Bi & Jiezhi Chen & Ran Xu & Feng Wei & Changhui Mao, 2023. "Application of an NDIR Sensor System Developed for Early Thermal Runaway Warning of Automotive Batteries," Energies, MDPI, vol. 16(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3620-:d:1130157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    2. Charles Mohamed Hamisi & Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2022. "An Electrothermal Model to Predict Thermal Characteristics of Lithium-Ion Battery under Overcharge Condition," Energies, MDPI, vol. 15(6), pages 1-16, March.
    3. Hou, Liubin & Dong, Ao & Ma, Ruifei & Lin, Hejie & Deng, Yelin, 2024. "The sensitive detection of the early-stage internal short circuit triggered by lithium plating through the simplified electrochemical model at various working conditions," Energy, Elsevier, vol. 304(C).
    4. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Wang, Cong-jie & Zhu, Yan-li & Gao, Fei & Bu, Xin-ya & Chen, Heng-shuai & Quan, Ting & Xu, Yi-bo & Jiao, Qing-jie, 2022. "Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge," Applied Energy, Elsevier, vol. 328(C).
    6. Liu, Yanhui & Zhang, Lei & Ding, Yifei & Huang, Xianjia & Huang, Xinyan, 2024. "Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries," Renewable Energy, Elsevier, vol. 222(C).
    7. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    8. Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
    9. Jie, Deng & Baohui, Chen & Jiazheng, Lu & Tiannian, Zhou & Chuanping, Wu, 2024. "Thermal runaway and combustion characteristics, risk and hazard evaluation of lithium‑iron phosphate battery under different thermal runaway triggering modes," Applied Energy, Elsevier, vol. 368(C).
    10. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    11. Zhang, Lei & Huang, Lvwei & Zhang, Zhaosheng & Wang, Zhenpo & Dorrell, David D., 2022. "Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging," Applied Energy, Elsevier, vol. 327(C).
    12. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    13. Hu, Jian & Tang, Xiaojie & Zhu, Xiaolong & Liu, Tong & Wang, Xishi, 2024. "Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist," Energy, Elsevier, vol. 286(C).
    14. Wang, Huaibin & Wang, Shuyu & Feng, Xuning & Zhang, Xuan & Dai, Kangwei & Sheng, Jun & Zhao, Zhenyang & Du, Zhiming & Zhang, Zelin & Shen, Kai & Xu, Chengshan & Wang, Qinzheng & Sun, Xiaoyu & Li, Yanl, 2021. "An experimental study on the thermal characteristics of the Cell-To-Pack system," Energy, Elsevier, vol. 227(C).
    15. Huang, Peifeng & Zeng, Ganghui & He, Yanyun & Liu, Shoutong & Li, Eric & Bai, Zhonghao, 2023. "Damage evolution mechanism and early warning using long short-term memory networks for battery slight overcharge cycles," Renewable Energy, Elsevier, vol. 217(C).
    16. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    17. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    18. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    19. Anwei Zhang & You Zhou & Chengyun Wang & Shoutong Liu & Peifeng Huang & Hao Yan & Zhonghao Bai, 2023. "Probing Fault Features of Lithium-Ion Battery Modules under Mechanical Deformation Loading," Sustainability, MDPI, vol. 15(15), pages 1-13, August.
    20. Jordan, S.M. & Schreiber, C.O. & Parhizi, M. & Shah, K., 2024. "A new multiphysics modeling framework to simulate coupled electrochemical-thermal-electrical phenomena in Li-ion battery packs," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3620-:d:1130157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.