IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018256.html
   My bibliography  Save this article

Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries

Author

Listed:
  • Liu, Yanhui
  • Zhang, Lei
  • Ding, Yifei
  • Huang, Xianjia
  • Huang, Xinyan

Abstract

The external heating test is widely used to evaluate the hazards of battery thermal runaway, but the efficiency and effect of the heating source are rarely quantified. This work performs thermal runaway propagation tests in a 3-layer cylindrical battery pile with a uniform state of charge (SOC) ranging from 30 % to 75 %. A cylindrical heater is in contact with two cells in the first layer and has a power varying from 50 W to 300 W to trigger thermal runaway. Results indicate that for the current system, the heating efficiency to a single cell is around 15 %, and the effective heating power is insensitive to the SOC. The intensity of thermal runaway increases with the external heating power and the cell SOC. The influence of external heating on the propagation of thermal runaway is reflected in the intensity of thermal runaway in the first-layer cells and the preheating effect of subsequent layers. A simplified heat-transfer model is established to quantify the thermal impact on both thermal runaway intensity and preheating depth. Finally, a new approach for selecting the appropriate heating power is proposed to help optimize battery thermal-runaway tests and improve the safety regulations for battery modules.

Suggested Citation

  • Liu, Yanhui & Zhang, Lei & Ding, Yifei & Huang, Xianjia & Huang, Xinyan, 2024. "Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018256
    DOI: 10.1016/j.renene.2023.119910
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018256
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Zhang, Wencan & Huang, Liansheng & Zhang, Zhongbo & Li, Xingyao & Ma, Ruixin & Ren, Yimao & Wu, Weixiong, 2022. "Non-uniform phase change material strategy for directional mitigation of battery thermal runaway propagation," Renewable Energy, Elsevier, vol. 200(C), pages 1338-1351.
    3. Fu, Yangyang & Lu, Song & Shi, Long & Cheng, Xudong & Zhang, Heping, 2018. "Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure," Energy, Elsevier, vol. 161(C), pages 38-45.
    4. Weng, Jingwen & Yang, Xiaoqing & Ouyang, Dongxu & Chen, Mingyi & Zhang, Guoqing & Wang, Jian, 2019. "Comparative study on the transversal/lengthwise thermal failure propagation and heating position effect of lithium-ion batteries," Applied Energy, Elsevier, vol. 255(C).
    5. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    6. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    7. Wang, Haimin & Shi, Weijie & Hu, Feng & Wang, Yufei & Hu, Xuebin & Li, Huanqi, 2021. "Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode," Energy, Elsevier, vol. 224(C).
    8. Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
    9. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    10. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    11. Kvasha, Andriy & Gutiérrez, César & Osa, Urtzi & de Meatza, Iratxe & Blazquez, J. Alberto & Macicior, Haritz & Urdampilleta, Idoia, 2018. "A comparative study of thermal runaway of commercial lithium ion cells," Energy, Elsevier, vol. 159(C), pages 547-557.
    12. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    13. Said, Ahmed O. & Lee, Christopher & Stoliarov, Stanislav I. & Marshall, André W., 2019. "Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays," Applied Energy, Elsevier, vol. 248(C), pages 415-428.
    14. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Li, Lun & Ju, Xiaoyu & Yang, Lizhong, 2024. "Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse," Renewable Energy, Elsevier, vol. 220(C).
    2. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    3. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    4. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Ju, Xiaoyu & Yang, Lizhong, 2023. "Investigating thermal runaway characteristics and trigger mechanism of the parallel lithium-ion battery," Applied Energy, Elsevier, vol. 349(C).
    5. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    6. Zhou, Zhizuan & Zhou, Xiaodong & Li, Maoyu & Cao, Bei & Liew, K.M. & Yang, Lizhong, 2022. "Experimentally exploring prevention of thermal runaway propagation of large-format prismatic lithium-ion battery module," Applied Energy, Elsevier, vol. 327(C).
    7. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    8. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
    10. Huang, Peifeng & Yao, Caixia & Mao, Binbin & Wang, Qingsong & Sun, Jinhua & Bai, Zhonghao, 2020. "The critical characteristics and transition process of lithium-ion battery thermal runaway," Energy, Elsevier, vol. 213(C).
    11. Jia, Zhuangzhuang & Huang, Zonghou & Zhai, Hongju & Qin, Pen & Zhang, Yue & Li, Yawen & Wang, Qingsong, 2022. "Experimental investigation on thermal runaway propagation of 18,650 lithium-ion battery modules with two cathode materials at low pressure," Energy, Elsevier, vol. 251(C).
    12. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    13. Pan, Yue & Kong, Xiangdong & Yuan, Yuebo & Sun, Yukun & Han, Xuebing & Yang, Hongxin & Zhang, Jianbiao & Liu, Xiaoan & Gao, Panlong & Li, Yihui & Lu, Languang & Ouyang, Minggao, 2023. "Detecting the foreign matter defect in lithium-ion batteries based on battery pilot manufacturing line data analyses," Energy, Elsevier, vol. 262(PB).
    14. Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
    15. Zhang, Wencan & Ouyang, Nan & Yin, Xiuxing & Li, Xingyao & Wu, Weixiong & Huang, Liansheng, 2022. "Data-driven early warning strategy for thermal runaway propagation in Lithium-ion battery modules with variable state of charge," Applied Energy, Elsevier, vol. 323(C).
    16. Lin, Shao & Ling, Ziye & Li, Suimin & Cai, Chuyue & Zhang, Zhengguo & Fang, Xiaoming, 2023. "Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage," Energy, Elsevier, vol. 266(C).
    17. Feng Qian & Hewu Wang & Minghai Li & Cheng Li & Hengjie Shen & Juan Wang & Yalun Li & Minggao Ouyang, 2023. "Thermal Runaway Vent Gases from High-Capacity Energy Storage LiFePO 4 Lithium Iron," Energies, MDPI, vol. 16(8), pages 1-15, April.
    18. Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.
    19. Hu, Jian & Tang, Xiaojie & Zhu, Xiaolong & Liu, Tong & Wang, Xishi, 2024. "Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist," Energy, Elsevier, vol. 286(C).
    20. Xu, Chengshan & Wang, Huaibin & Jiang, Fachao & Feng, Xuning & Lu, Languang & Jin, Changyong & Zhang, Fangshu & Huang, Wensheng & Zhang, Mengqi & Ouyang, Minggao, 2023. "Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.