IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922014817.html
   My bibliography  Save this article

Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge

Author

Listed:
  • Wang, Cong-jie
  • Zhu, Yan-li
  • Gao, Fei
  • Bu, Xin-ya
  • Chen, Heng-shuai
  • Quan, Ting
  • Xu, Yi-bo
  • Jiao, Qing-jie

Abstract

The safety evolution behavior of LiFePO4/graphite batteries with different states of health (SOHs) under overcharge is studied based on material morphology, structure, thermal stability and heat analysis. The overcharge results of the 100 % SOH battery show that with increasing state of charge (SOC), the cathode material gradually falls off due to binder oxidation. The number of pores in the separator is significantly reduced when the SOC reaches 120 %, resulting in increased internal resistance. Before the internal short circuit (ISC), the degree of lithium intercalation in the anode increases, and the heat release of the reaction between lithiated graphite and the binder increases, whereas both decrease after ISC due to severe side reactions. The heat release from SEI decomposition increases after ISC as the SOH of the retired battery decreases, while the heat release from the reaction between lithiated graphite and binder decreases. The ISC starts from the positive collector side. Thermal analysis results show that Joule heat plays a key role in the occurrence of ISC. After ISC, QSEI (SEI decomposition heat) + QLi-ele (lithium and electrolyte reaction heat) and QLi-bin (lithiated graphite and binder reaction heat) together determine the difference in thermal runaway (TR) behavior of different SOH batteries.

Suggested Citation

  • Wang, Cong-jie & Zhu, Yan-li & Gao, Fei & Bu, Xin-ya & Chen, Heng-shuai & Quan, Ting & Xu, Yi-bo & Jiao, Qing-jie, 2022. "Internal short circuit and thermal runaway evolution mechanism of fresh and retired lithium-ion batteries with LiFePO4 cathode during overcharge," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014817
    DOI: 10.1016/j.apenergy.2022.120224
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120224?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Dongsheng & Feng, Xuning & Lu, Languang & He, Xiangming & Ouyang, Minggao, 2019. "Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions," Applied Energy, Elsevier, vol. 250(C), pages 323-332.
    2. Zhu, Xiaoqing & Wang, Zhenpo & Wang, Yituo & Wang, Hsin & Wang, Cong & Tong, Lei & Yi, Mi, 2019. "Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method," Energy, Elsevier, vol. 169(C), pages 868-880.
    3. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jian & Tang, Xiaojie & Zhu, Xiaolong & Liu, Tong & Wang, Xishi, 2024. "Suppression of thermal runaway induced by thermal abuse in large-capacity lithium-ion batteries with water mist," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhizuan & Zhou, Xiaodong & Cao, Bei & Yang, Lizhong & Liew, K.M., 2022. "Investigating the relationship between heating temperature and thermal runaway of prismatic lithium-ion battery with LiFePO4 as cathode," Energy, Elsevier, vol. 256(C).
    2. Zhang, Lei & Huang, Lvwei & Zhang, Zhaosheng & Wang, Zhenpo & Dorrell, David D., 2022. "Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging," Applied Energy, Elsevier, vol. 327(C).
    3. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    4. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    5. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    6. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    7. Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).
    8. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    10. An, Zhoujian & Zhao, Yabing & Du, Xiaoze & Shi, Tianlu & Zhang, Dong, 2023. "Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Li-ion battery," Applied Energy, Elsevier, vol. 332(C).
    11. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    12. Jia, Zhuangzhuang & Song, Laifeng & Mei, Wenxin & Yu, Yin & Meng, Xiangdong & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries," Applied Energy, Elsevier, vol. 327(C).
    13. Marcel Roy B. Domalanta & Julie Anne D. R. Paraggua, 2023. "A Multiphysics Model Simulating the Electrochemical, Thermal, and Thermal Runaway Behaviors of Lithium Polymer Battery," Energies, MDPI, vol. 16(6), pages 1-24, March.
    14. Liu, Yanhui & Zhang, Lei & Ding, Yifei & Huang, Xianjia & Huang, Xinyan, 2024. "Effect of thermal impact on the onset and propagation of thermal runaway over cylindrical Li-ion batteries," Renewable Energy, Elsevier, vol. 222(C).
    15. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    16. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).
    17. Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
    18. Li, Junqiu & Sun, Danni & Jin, Xin & Shi, Wentong & Sun, Chao, 2019. "Lithium-ion battery overcharging thermal characteristics analysis and an impedance-based electro-thermal coupled model simulation," Applied Energy, Elsevier, vol. 254(C).
    19. Yulu Han & Yongmin Zhao & Anjie Ming & Yanyan Fang & Sheng Fang & Shansong Bi & Jiezhi Chen & Ran Xu & Feng Wei & Changhui Mao, 2023. "Application of an NDIR Sensor System Developed for Early Thermal Runaway Warning of Automotive Batteries," Energies, MDPI, vol. 16(9), pages 1-13, April.
    20. Shi, Haotian & Wang, Shunli & Fernandez, Carlos & Yu, Chunmei & Xu, Wenhua & Dablu, Bobobee Etse & Wang, Liping, 2022. "Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.