IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2588-d1092277.html
   My bibliography  Save this article

Feasibility of the Production of Argemone pleiacantha Ultrasound-Assisted Biodiesel for Temperate and Tropical Marginal Areas

Author

Listed:
  • Javier Sáez-Bastante

    (Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain)

  • Miguel Carmona-Cabello

    (Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain)

  • Elena Villarreal-Ornelas

    (Regional Unit of Arid Areas, Chapingo Autonomous University, Pueblo Bermejillo 35230, Dgo., Mexico)

  • Ricardo Trejo-Calzada

    (Regional Unit of Arid Areas, Chapingo Autonomous University, Pueblo Bermejillo 35230, Dgo., Mexico)

  • Sara Pinzi

    (Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain)

  • M. Pilar Dorado

    (Department of Physical Chemistry and Applied Thermodynamics, Escuela Politécnica Superior, Edificio Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain)

Abstract

The present work studies biofuel production using an American native species that belongs to the Argemone genus. It is considered a weed, and its presence extends from the southern United States to some areas of South America; the species Argemone pleiacantha , together with other species of the same genus, is known as “chicalote”. Oil physical and chemical properties confirm that chicalote oil is an effective raw material for biofuel production, presenting a fatty acid composition similar to that of soybean oil. A biodiesel production study was carried out using two methods of synthesis, conventional and ultrasound-assisted transesterification, employing the same molar ratio and amount of catalyst in both cases. Reaction time and supplied energy during synthesis were compared in batch mode. The results revealed that ultrasound-assisted transesterification has significant advantages over the conventional one in terms of reaction time and energy savings during chicalote oil synthesis to produce fatty acid methyl esters.

Suggested Citation

  • Javier Sáez-Bastante & Miguel Carmona-Cabello & Elena Villarreal-Ornelas & Ricardo Trejo-Calzada & Sara Pinzi & M. Pilar Dorado, 2023. "Feasibility of the Production of Argemone pleiacantha Ultrasound-Assisted Biodiesel for Temperate and Tropical Marginal Areas," Energies, MDPI, vol. 16(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2588-:d:1092277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyyedeh Faezeh Mirab Haghighi & Payam Parvasi & Seyyed Mohammad Jokar & Angelo Basile, 2021. "Investigating the Effects of Ultrasonic Frequency and Membrane Technology on Biodiesel Production from Chicken Waste," Energies, MDPI, vol. 14(8), pages 1-21, April.
    2. M. Mofijur & F. Kusumo & I. M. Rizwanul Fattah & H. M. Mahmudul & M. G. Rasul & A. H. Shamsuddin & T. M. I. Mahlia, 2020. "Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production," Energies, MDPI, vol. 13(7), pages 1-15, April.
    3. Varatharajan, K. & Pushparani, D.S., 2018. "Screening of antioxidant additives for biodiesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2017-2028.
    4. Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
    5. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    6. Mohammed Kamil & Khalid Ramadan & Abdul Ghani Olabi & Chaouki Ghenai & Abrar Inayat & Mugdad H. Rajab, 2019. "Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing," Energies, MDPI, vol. 12(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jemima Romola, C.V. & Meganaharshini, M. & Rigby, S.P. & Ganesh Moorthy, I. & Shyam Kumar, R. & Karthikumar, Sankar, 2021. "A comprehensive review of the selection of natural and synthetic antioxidants to enhance the oxidative stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. José María Encinar & Sergio Nogales & Juan Félix González, 2020. "The effect of BHA on oxidative stability of biodiesel from different sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1193-1201, December.
    3. Youssef Kassem & Hüseyin Çamur & Ebaa Alassi, 2020. "Biodiesel Production from Four Residential Waste Frying Oils: Proposing Blends for Improving the Physicochemical Properties of Methyl Biodiesel," Energies, MDPI, vol. 13(16), pages 1-25, August.
    4. Sergio Nogales-Delgado & Nuria Sánchez & José María Encinar, 2020. "Valorization of Cynara Cardunculus L. Oil as the Basis of a Biorefinery for Biodiesel and Biolubricant Production," Energies, MDPI, vol. 13(19), pages 1-19, September.
    5. Sergio Nogales-Delgado & José María Encinar & Juan Félix González, 2019. "Safflower Biodiesel: Improvement of its Oxidative Stability by Using BHA and TBHQ," Energies, MDPI, vol. 12(10), pages 1-13, May.
    6. Sergio Nogales-Delgado & Agustina Guiberteau Cabanillas & Juan Pedro Moro & José María Encinar Martín, 2023. "Use of Propyl Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation," Clean Technol., MDPI, vol. 5(2), pages 1-15, May.
    7. Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
    8. Sebayang, Abdi Hanra & Ideris, Fazril & Silitonga, Arridina Susan & Shamsuddin, A.H. & Zamri, M.F.M.A. & Pulungan, Muhammad Anhar & Siahaan, Sihar & Alfansury, Munawar & Kusumo, F. & Milano, Jassinnee, 2023. "Optimization of ultrasound-assisted oil extraction from Carica candamarcensis; A potential Oleaginous tropical seed oil for biodiesel production," Renewable Energy, Elsevier, vol. 211(C), pages 434-444.
    9. Fábio Antônio do Nascimento Setúbal & Sérgio de Souza Custódio Filho & Newton Sure Soeiro & Alexandre Luiz Amarante Mesquita & Marcus Vinicius Alves Nunes, 2022. "Force Identification from Vibration Data by Response Surface and Random Forest Regression Algorithms," Energies, MDPI, vol. 15(10), pages 1-15, May.
    10. Paparao, Jami & Soundarya, N. & Murugan, S., 2023. "Advancing green technology: Experimental study on low heat rejection engine utilizing bio-based antioxidant-doped biodiesel-diesel blends and oxy-hydrogen gas," Energy, Elsevier, vol. 283(C).
    11. Karishma, Shaik Mullan & Rajak, Upendra & Naik, B. Kiran & Dasore, Abhishek & Konijeti, Ramakrishna, 2022. "Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel," Energy, Elsevier, vol. 245(C).
    12. Govindasamy, Mohan & Ramalingam, Senthil & Dhairiyasamy, Ratchagaraja & Rajendran, Silambarasan, 2022. "Investigation on thermal and storage stability of the Calophyllum inophyllum ester with natural leaf extract as antioxidant additive," Energy, Elsevier, vol. 253(C).
    13. Serqueira, Dalyelli S. & Pereira, Jian F.S. & Squissato, André L. & Rodrigues, Mônica A. & Lima, Renata C. & Faria, Anízio M. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2021. "Oxidative stability and corrosivity of biodiesel produced from residual cooking oil exposed to copper and carbon steel under simulated storage conditions: Dual effect of antioxidants," Renewable Energy, Elsevier, vol. 164(C), pages 1485-1495.
    14. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    15. Hwai Chyuan Ong & M. Mofijur & A.S. Silitonga & D. Gumilang & Fitranto Kusumo & T.M.I. Mahlia, 2020. "Physicochemical Properties of Biodiesel Synthesised from Grape Seed, Philippine Tung, Kesambi, and Palm Oils," Energies, MDPI, vol. 13(6), pages 1-14, March.
    16. Oza, Suvik & Kodgire, Pravin & Kachhwaha, Surendra Singh & Lam, Man Kee & Yusup, Suzana & Chai, Yee Ho & Rokhum, Samuel Lalthazuala, 2024. "A review on sustainable and scalable biodiesel production using ultra-sonication technology," Renewable Energy, Elsevier, vol. 226(C).
    17. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    18. Nogueira, Tiago Rocha & de Mesquita Figueredo, Igor & Tavares Luna, Francisco Murilo & Cavalcante, Célio Loureiro & Evangelista de Ávila dos Santos, João & Sousa Lima, Mary Anne & Josino da Silva, Thi, 2020. "Evaluation of oxidative stability of soybean biodiesel using ethanolic and chloroform extracts of Platymiscium floribundum as antioxidant," Renewable Energy, Elsevier, vol. 159(C), pages 767-774.
    19. Ming-Chien Hsiao & Peir-Horng Liao & Kuo-Chou Yang & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2022. "Enhanced Biodiesel Synthesis via a Homogenizer-Assisted Two-Stage Conversion Process Using Waste Edible Oil as Feedstock," Energies, MDPI, vol. 15(23), pages 1-15, November.
    20. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2588-:d:1092277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.