IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3147-d258108.html
   My bibliography  Save this article

Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing

Author

Listed:
  • Mohammed Kamil

    (Mechanical & Nuclear Engineering Department, University of Sharjah, Sharjah 27272, UAE
    Sustainable Energy Development Research Group, Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE)

  • Khalid Ramadan

    (Mechanical & Nuclear Engineering Department, University of Sharjah, Sharjah 27272, UAE)

  • Abdul Ghani Olabi

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE
    Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham B4 7ET, UK)

  • Chaouki Ghenai

    (Sustainable Energy Development Research Group, Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, UAE
    Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

  • Abrar Inayat

    (Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, UAE)

  • Mugdad H. Rajab

    (College of Petroleum and Minerals Engineering, Tikrit University, Tikrit 0218, Iraq)

Abstract

The development of alternative fuels is increasingly important in order to maintain ongoing global economic and technological progress in the face of fossil fuel depletion and increasing environmental damage. Desert palm date seeds have clear potential as feedstock for biodiesel production given their high oil content and availability as food waste that requires no further cultivation. In this study we investigated the optimum production processes and conditions for date seed oil biodiesel, including characterizing the intermediate product and correcting its composition to meet international fuel standards. Four biodiesel blends were prepared (B5, B10, B15, and B20) and tested in a compression ignition engine at engine speeds from 1600 to 3600 rpm (200 rpm increments) and three engine loads (50%, 75%, and 100%). The highest oil yield and biodiesel conversion achieved were 10.74 wt.% and 92%, respectively. The biodiesel properties conformed well with the standards; the values for brake power, brake thermal efficiency, and brake specific fuel consumption were comparable with petrol diesel, though the latter was slightly superior. All blends produced lower levels of CO 2 , CO, and HC but higher levels of NO x emissions. These results demonstrate the fundamental suitability of date seeds as biodiesel feedstock, deserving of further research.

Suggested Citation

  • Mohammed Kamil & Khalid Ramadan & Abdul Ghani Olabi & Chaouki Ghenai & Abrar Inayat & Mugdad H. Rajab, 2019. "Desert Palm Date Seeds as a Biodiesel Feedstock: Extraction, Characterization, and Engine Testing," Energies, MDPI, vol. 12(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3147-:d:258108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arunkumar, M. & Kannan, M. & Murali, G., 2019. "Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine," Renewable Energy, Elsevier, vol. 131(C), pages 737-744.
    2. Minjeong Lee & Minseok Yang & Sangki Choi & Jingyeong Shin & Chanhyuk Park & Si-Kyung Cho & Young Mo Kim, 2019. "Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process," Energies, MDPI, vol. 12(12), pages 1-13, June.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    5. Aydin, Hüseyin & Bayindir, Hasan, 2010. "Performance and emission analysis of cottonseed oil methyl ester in a diesel engine," Renewable Energy, Elsevier, vol. 35(3), pages 588-592.
    6. Hirner, Felix Sebastian & Hwang, Joonsik & Bae, Choongsik & Patel, Chetankumar & Gupta, Tarun & Agarwal, Avinash Kumar, 2019. "Performance and emission evaluation of a small-bore biodiesel compression-ignition engine," Energy, Elsevier, vol. 183(C), pages 971-982.
    7. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    8. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk & Lim, Hee Chang, 2013. "A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends," Energy, Elsevier, vol. 56(C), pages 1-7.
    9. Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.
    10. George Anastopoulos & Ypatia Zannikou & Stamoulis Stournas & Stamatis Kalligeros, 2009. "Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters," Energies, MDPI, vol. 2(2), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Javier Sáez-Bastante & Miguel Carmona-Cabello & Elena Villarreal-Ornelas & Ricardo Trejo-Calzada & Sara Pinzi & M. Pilar Dorado, 2023. "Feasibility of the Production of Argemone pleiacantha Ultrasound-Assisted Biodiesel for Temperate and Tropical Marginal Areas," Energies, MDPI, vol. 16(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    2. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    3. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    4. Altarazi, Yazan S.M. & Abu Talib, Abd Rahim & Yu, Jianglong & Gires, Ezanee & Abdul Ghafir, Mohd Fahmi & Lucas, John & Yusaf, Talal, 2022. "Effects of biofuel on engines performance and emission characteristics: A review," Energy, Elsevier, vol. 238(PC).
    5. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    6. Sadeghinezhad, E. & Kazi, S.N. & Sadeghinejad, Foad & Badarudin, A. & Mehrali, Mohammad & Sadri, Rad & Reza Safaei, Mohammad, 2014. "A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 29-44.
    7. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    8. Sadeghinezhad, E. & Kazi, S.N. & Badarudin, A. & Oon, C.S. & Zubir, M.N.M. & Mehrali, Mohammad, 2013. "A comprehensive review of bio-diesel as alternative fuel for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 410-424.
    9. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E. & Shahabuddin, M. & Palash, S.M. & Hazrat, M.A., 2013. "Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 441-455.
    10. Monirul, I.M. & Kalam, M.A. & Masjuki, H.H. & Zulkifli, N.W.M. & Shahir, S.A. & Mosarof, M.H. & Ruhul, A.M., 2017. "Influence of poly(methyl acrylate) additive on cold flow properties of coconut biodiesel blends and exhaust gas emissions," Renewable Energy, Elsevier, vol. 101(C), pages 702-712.
    11. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    12. Rahim Karami & Mohammad G. Rasul & Mohammad M. K. Khan, 2020. "CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine," Energies, MDPI, vol. 13(14), pages 1-21, July.
    13. Enrico Mattarelli & Carlo Alberto Rinaldini & Tommaso Savioli, 2015. "Combustion Analysis of a Diesel Engine Running on Different Biodiesel Blends," Energies, MDPI, vol. 8(4), pages 1-11, April.
    14. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    15. Charitha, V. & Thirumalini, S. & Prasad, M. & Srihari, S., 2019. "Investigation on performance and emissions of RCCI dual fuel combustion on diesel - bio diesel in a light duty engine," Renewable Energy, Elsevier, vol. 134(C), pages 1081-1088.
    16. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    17. Gharehghani, Ayatallah & Mirsalim, Mostafa & Hosseini, Reza, 2017. "Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission," Renewable Energy, Elsevier, vol. 101(C), pages 930-936.
    18. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.
    19. Zhang, Yu & Huang, Ronghua & Huang, Yuhan & Huang, Sheng & Zhou, Pei & Chen, Xi & Qin, Tian, 2018. "Experimental study on combustion characteristics of an n-butanol-biodiesel droplet," Energy, Elsevier, vol. 160(C), pages 490-499.
    20. Senthil, Ramalingam & Pranesh, Ganesan & Silambarasan, Rajendran, 2019. "Leaf extract additives: A solution for reduction of NOx emission in a biodiesel operated compression ignition engine," Energy, Elsevier, vol. 175(C), pages 862-878.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3147-:d:258108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.