IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9036-d987863.html
   My bibliography  Save this article

Enhanced Biodiesel Synthesis via a Homogenizer-Assisted Two-Stage Conversion Process Using Waste Edible Oil as Feedstock

Author

Listed:
  • Ming-Chien Hsiao

    (Green Energy Technology Research Center, Kun Shan University, Tainan 71070, Taiwan
    Department of Environmental Engineering, Kun Shan University, Tainan 71070, Taiwan)

  • Peir-Horng Liao

    (Department of Environmental Engineering, Kun Shan University, Tainan 71070, Taiwan)

  • Kuo-Chou Yang

    (Department of Environmental Engineering, Kun Shan University, Tainan 71070, Taiwan)

  • Nguyen Vu Lan

    (Department of International Relations, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam)

  • Shuhn-Shyurng Hou

    (Green Energy Technology Research Center, Kun Shan University, Tainan 71070, Taiwan
    Department of Mechanical Engineering, Kun Shan University, Tainan 71070, Taiwan)

Abstract

In this study, a homogenizer in conjunction with a two-stage process was utilized to facilitate biodiesel production from waste edible oil (WEO). This paper contributes to the improvement of the yield and the shortening of the reaction time for biodiesel synthesis. Sulfuric acid was used in the first stage which was the esterification of the free fatty acids (FFA) of the WEO; then the transesterification reaction of triglycerides took place in the second stage with an alkaline catalysis. The present investigation aimed to explore the parameters affecting the reactions, including homogenizer speed, alcohol/oil molar ratio, catalyst dosage, reaction temperature, and reaction time. Under the operating conditions of the first stage (the reaction temperature was 65 °C, the homogenizer speed was 8000 rpm, the methanol/oil molar ratio was 15:1, and the amount of sulfuric acid was 4 wt%), the acid value fell to below 2 mg KOH/g after 10 min. The best base-catalyzed conditions in the second stage were: homogenizer speed of 8000 rpm, NaOH catalyst concentration of 1 wt%, methanol/oil molar ratio of 9:1 (mol/mol), reaction temperature of 65 °C, and reaction time 10 min. Consequently, the conversion rate from WEO to biodiesel achieved 97% after only 20 min, in line with the EU EN14214 standard, which requires a biodiesel production rate of at least 96.5%.

Suggested Citation

  • Ming-Chien Hsiao & Peir-Horng Liao & Kuo-Chou Yang & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2022. "Enhanced Biodiesel Synthesis via a Homogenizer-Assisted Two-Stage Conversion Process Using Waste Edible Oil as Feedstock," Energies, MDPI, vol. 15(23), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9036-:d:987863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ming-Chien Hsiao & Jui-Yang Kuo & Pei-Hsuan Hsieh & Shuhn-Shyurng Hou, 2018. "Improving Biodiesel Conversions from Blends of High- and Low-Acid-Value Waste Cooking Oils Using Sodium Methoxide as a Catalyst Based on a High Speed Homogenizer," Energies, MDPI, vol. 11(9), pages 1-11, August.
    2. Hanh, Hoang Duc & Dong, Nguyen The & Okitsu, Kenji & Nishimura, Rokuro & Maeda, Yasuaki, 2009. "Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field," Renewable Energy, Elsevier, vol. 34(3), pages 766-768.
    3. Seyyedeh Faezeh Mirab Haghighi & Payam Parvasi & Seyyed Mohammad Jokar & Angelo Basile, 2021. "Investigating the Effects of Ultrasonic Frequency and Membrane Technology on Biodiesel Production from Chicken Waste," Energies, MDPI, vol. 14(8), pages 1-21, April.
    4. Ming-Chien Hsiao & Li-Wen Chang & Shuhn-Shyurng Hou, 2019. "Study of Solid Calcium Diglyceroxide for Biodiesel Production from Waste Cooking Oil Using a High Speed Homogenizer," Energies, MDPI, vol. 12(17), pages 1-11, August.
    5. Ming-Chien Hsiao & Peir-Horng Liao & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2021. "Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst," Energies, MDPI, vol. 14(2), pages 1-11, January.
    6. Aghel, Babak & Gouran, Ashkan & Nasirmanesh, Farzad, 2022. "Transesterification of waste cooking oil using clinoptilolite/ industrial phosphoric waste as green and environmental catalysts," Energy, Elsevier, vol. 244(PB).
    7. Mohadesi, Majid & Gouran, Ashkan & Dehghan Dehnavi, Amir, 2021. "Biodiesel production using low cost material as high effective catalyst in a microreactor," Energy, Elsevier, vol. 219(C).
    8. Ming-Chien Hsiao & Wei-Ting Lin & Wei-Cheng Chiu & Shuhn-Shyurng Hou, 2021. "Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method," Energies, MDPI, vol. 14(12), pages 1-14, June.
    9. Gouda, Shiva Prasad & Ngaosuwan, Kanokwan & Assabumrungrat, Suttichai & Selvaraj, Manickam & Halder, Gopinath & Rokhum, Samuel Lalthazuala, 2022. "Microwave assisted biodiesel production using sulfonic acid-functionalized metal-organic frameworks UiO-66 as a heterogeneous catalyst," Renewable Energy, Elsevier, vol. 197(C), pages 161-169.
    10. Ming-Chien Hsiao & Shuhn-Shyurng Hou & Jui-Yang Kuo & Pei-Hsuan Hsieh, 2018. "Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions," Energies, MDPI, vol. 11(10), pages 1-12, October.
    11. A. G. M. B. Mustayen & M. G. Rasul & Xiaolin Wang & M. M. K. Bhuiya & Michael Negnevitsky & James Hamilton, 2022. "Theoretical and Experimental Analysis of Engine Performance and Emissions Fuelled with Jojoba Biodiesel," Energies, MDPI, vol. 15(17), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Chien Hsiao & Wei-Ting Lin & Wei-Cheng Chiu & Shuhn-Shyurng Hou, 2021. "Two-Stage Biodiesel Synthesis from Used Cooking Oil with a High Acid Value via an Ultrasound-Assisted Method," Energies, MDPI, vol. 14(12), pages 1-14, June.
    2. Ming-Chien Hsiao & Peir-Horng Liao & Nguyen Vu Lan & Shuhn-Shyurng Hou, 2021. "Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst," Energies, MDPI, vol. 14(2), pages 1-11, January.
    3. Oza, Suvik & Kodgire, Pravin & Kachhwaha, Surendra Singh & Lam, Man Kee & Yusup, Suzana & Chai, Yee Ho & Rokhum, Samuel Lalthazuala, 2024. "A review on sustainable and scalable biodiesel production using ultra-sonication technology," Renewable Energy, Elsevier, vol. 226(C).
    4. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Marina Corral Bobadilla & Roberto Fernández Martínez & Rubén Lostado Lorza & Fátima Somovilla Gómez & Eliseo P. Vergara González, 2018. "Optimizing Biodiesel Production from Waste Cooking Oil Using Genetic Algorithm-Based Support Vector Machines," Energies, MDPI, vol. 11(11), pages 1-19, November.
    6. Sri Kurniati & Sudjito Soeparman & Sudarminto Setyo Yuwono & Lukman Hakim & Sudirman Syam, 2019. "A Novel Process for Production of Calophyllum Inophyllum Biodiesel with Electromagnetic Induction," Energies, MDPI, vol. 12(3), pages 1-20, January.
    7. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    8. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    9. Verma, Puneet & Sharma, M.P. & Dwivedi, Gaurav, 2016. "Impact of alcohol on biodiesel production and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 319-333.
    10. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).
    11. Saikia, Kankana & Das, Arpita & Sema, Atoholi H. & Basumatary, Sanjay & Shaemningwar Moyon, N. & Mathimani, Thangavel & Rokhum, Samuel Lalthazuala, 2024. "Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst," Renewable Energy, Elsevier, vol. 229(C).
    12. Wang, Zhijuan & Zhou, Huajing & Liu, Zilian & Miao, Rongrong & He, Liang & Guan, Qingqing, 2023. "Walnut-shaped calcium oxide-cancrinite spheres for transesterification of waste frying oil," Renewable Energy, Elsevier, vol. 208(C), pages 229-239.
    13. Guiyan Zang & Jianan Zhang & Junxi Jia & Nathaniel Weger & Albert Ratner, 2019. "Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    14. Deeba, Farha & Kumar, Bijender & Arora, Neha & Singh, Sauraj & Kumar, Anuj & Han, Sung Soo & Negi, Yuvraj S., 2020. "Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production," Renewable Energy, Elsevier, vol. 159(C), pages 127-139.
    15. Saengprachum, Nisakorn & Cai, Dongren & Li, Mantian & Li, Ling & Lin, Xiaocheng & Qiu, Ting, 2019. "Acidic chitosan membrane as an efficient catalyst for biodiesel production from oleic acid," Renewable Energy, Elsevier, vol. 143(C), pages 1488-1499.
    16. Ming-Chien Hsiao & Shuhn-Shyurng Hou & Jui-Yang Kuo & Pei-Hsuan Hsieh, 2018. "Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions," Energies, MDPI, vol. 11(10), pages 1-12, October.
    17. Veljković, Vlada B. & Avramović, Jelena M. & Stamenković, Olivera S., 2012. "Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1193-1209.
    18. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    19. José María Encinar & Ana Pardal & Nuria Sánchez & Sergio Nogales, 2018. "Biodiesel by Transesterification of Rapeseed Oil Using Ultrasound: A Kinetic Study of Base-Catalysed Reactions," Energies, MDPI, vol. 11(9), pages 1-13, August.
    20. Hoang Chinh Nguyen & Fu-Ming Wang & Kim Khue Dinh & Thanh Truc Pham & Horng-Yi Juan & Nguyen Phuong Nguyen & Hwai Chyuan Ong & Chia-Hung Su, 2020. "Microwave-Assisted Noncatalytic Esterification of Fatty Acid for Biodiesel Production: A Kinetic Study," Energies, MDPI, vol. 13(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9036-:d:987863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.