IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2138-d1077063.html
   My bibliography  Save this article

Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles

Author

Listed:
  • Geetha Palani

    (Department of EEE, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India)

  • Usha Sengamalai

    (Department of EEE, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India)

  • Pradeep Vishnuram

    (Department of EEE, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India)

  • Benedetto Nastasi

    (Department of Planning, Design and Technology of Architecture, Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy)

Abstract

Electric vehicles could be a significant aid in lowering greenhouse gas emissions. Even though extensive study has been done on the features and traits of electric vehicles and the nature of their charging infrastructure, network modeling for electric vehicle manufacturing has been limited and unchanging. The necessity of wireless electric vehicle charging, based on magnetic resonance coupling, drove the primary aims for this review work. Herein, we examined the basic theoretical framework for wireless power transmission systems for EV charging and performed a software-in-the-loop analysis, in addition to carrying out a performance analysis of an EV charging system based on magnetic resonance. This study also covered power pad designs and created workable remedies for the following issues: (i) how power pad positioning affected the function of wireless charging systems and (ii) how to develop strategies to keep power efficiency at its highest level. Moreover, safety features of wireless charging systems, owing to interruption from foreign objects and/or living objects, were analyzed, and solutions were proposed to ensure such systems would operate as safely and optimally as possible.

Suggested Citation

  • Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2138-:d:1077063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heqi Xu & Chunfang Wang & Dongwei Xia & Yunrui Liu, 2019. "Design of Magnetic Coupler for Wireless Power Transfer," Energies, MDPI, vol. 12(15), pages 1-12, August.
    2. Bellocchi, Sara & Colbertaldo, Paolo & Manno, Michele & Nastasi, Benedetto, 2023. "Assessing the effectiveness of hydrogen pathways: A techno-economic optimisation within an integrated energy system," Energy, Elsevier, vol. 263(PE).
    3. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    4. Md Morshed Alam & Saad Mekhilef & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Analysis of LC-LC 2 Compensated Inductive Power Transfer for High Efficiency and Load Independent Voltage Gain," Energies, MDPI, vol. 11(11), pages 1-14, October.
    5. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    6. Yang Yang & Jinlong Cui & Xin Cui, 2020. "Design and Analysis of Magnetic Coils for Optimizing the Coupling Coefficient in an Electric Vehicle Wireless Power Transfer System," Energies, MDPI, vol. 13(16), pages 1-15, August.
    7. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    8. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Weitong Chen & Chunhua Liu & Christopher H.T. Lee & Zhiqiang Shan, 2016. "Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    10. Park, Changeun & Lim, Sesil & Shin, Jungwoo & Lee, Chul-Yong, 2022. "How much hydrogen should be supplied in the transportation market? Focusing on hydrogen fuel cell vehicle demand in South Korea," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    11. Jung-Hoon Cho & Byoung-Hee Lee & Young-Joon Kim, 2021. "Maximizing Transfer Efficiency with an Adaptive Wireless Power Transfer System for Variable Load Applications," Energies, MDPI, vol. 14(5), pages 1-11, March.
    12. Budimir Sudimac & Aleksandra Ugrinović & Mišo Jurčević, 2020. "The Application of Photovoltaic Systems in Sacred Buildings for the Purpose of Electric Power Production: The Case Study of the Cathedral of St. Michael the Archangel in Belgrade," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    13. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
    14. Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
    15. Bi, Zicheng & Kan, Tianze & Mi, Chunting Chris & Zhang, Yiming & Zhao, Zhengming & Keoleian, Gregory A., 2016. "A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility," Applied Energy, Elsevier, vol. 179(C), pages 413-425.
    16. Yujun Shin & Jaehyoung Park & Haerim Kim & Seongho Woo & Bumjin Park & Sungryul Huh & Changmin Lee & Seungyoung Ahn, 2021. "Design Considerations for Adding Series Inductors to Reduce Electromagnetic Field Interference in an Over-Coupled WPT System," Energies, MDPI, vol. 14(10), pages 1-28, May.
    17. Alessandro Annarelli & Giulia Palombi, 2021. "Digitalization Capabilities for Sustainable Cyber Resilience: A Conceptual Framework," Sustainability, MDPI, vol. 13(23), pages 1-9, November.
    18. Flah Aymen & Chokri Mahmoudi, 2019. "A Novel Energy Optimization Approach for Electrical Vehicles in a Smart City," Energies, MDPI, vol. 12(5), pages 1-22, March.
    19. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    20. Heshou Wang & Ka Wai Eric Cheng, 2021. "An Improved and Integrated Design of Segmented Dynamic Wireless Power Transfer for Electric Vehicles," Energies, MDPI, vol. 14(7), pages 1-14, April.
    21. Alicia Triviño & José M. González-González & José A. Aguado, 2021. "Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review," Energies, MDPI, vol. 14(6), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaith Baccouche & Mohamed Haikel Chehab & Chokri Ben Salah & Mehdi Tlija & Abdelhamid Rabhi, 2024. "Hybrid PVP/Battery/Fuel Cell Wireless Charging Stations Using High-Frequency Optimized Inverter Technology for Electric Vehicles," Energies, MDPI, vol. 17(14), pages 1-24, July.
    2. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    3. Pradeep Vishnuram & Suresh P. & Narayanamoorthi R. & Vijayakumar K. & Benedetto Nastasi, 2023. "Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy," Energies, MDPI, vol. 16(4), pages 1-18, February.
    4. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    6. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    7. Niu, Songyan & Xu, Haiqi & Sun, Zhirui & Shao, Z.Y. & Jian, Linni, 2019. "The state-of-the-arts of wireless electric vehicle charging via magnetic resonance: principles, standards and core technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    9. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    10. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    11. Li, Feng & Li, Yanjie & Zhou, Siqi & Chen, Yifang & Sun, Xuan & Deng, Yutong, 2022. "Wireless power transfer tuning model of electric vehicles with pavement materials as transmission media for energy conservation," Applied Energy, Elsevier, vol. 323(C).
    12. Andong Yin & Shenchun Wu & Weihan Li & Jinfang Hu, 2019. "Analysis of Battery Reduction for an Improved Opportunistic Wireless-Charged Electric Bus," Energies, MDPI, vol. 12(15), pages 1-24, July.
    13. Libin Yang & Ming Zong & Chunlai Li, 2021. "Voltage-Gain Design and Efficiency Optimization of Series/Series-Parallel Inductive Power Transfer System Considering Misalignment Issue," Energies, MDPI, vol. 14(11), pages 1-11, May.
    14. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    15. Ahmed A. S. Mohamed & Ahmed A. Shaier & Hamid Metwally & Sameh I. Selem, 2022. "An Overview of Dynamic Inductive Charging for Electric Vehicles," Energies, MDPI, vol. 15(15), pages 1-59, August.
    16. Suresh Panchanathan & Pradeep Vishnuram & Narayanamoorthi Rajamanickam & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2023. "A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System," Energies, MDPI, vol. 16(5), pages 1-33, March.
    17. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    18. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    19. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    20. Ahmed Abdalrahman & Weihua Zhuang, 2017. "A Survey on PEV Charging Infrastructure: Impact Assessment and Planning," Energies, MDPI, vol. 10(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2138-:d:1077063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.