IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p2999-d559863.html
   My bibliography  Save this article

Voltage-Gain Design and Efficiency Optimization of Series/Series-Parallel Inductive Power Transfer System Considering Misalignment Issue

Author

Listed:
  • Libin Yang

    (Department of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
    Clean Energy Development Institute of State Grid Qinghai Electric Power Company, Xining 810008, China)

  • Ming Zong

    (Department of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Chunlai Li

    (Department of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract

Compensation is key to an inductive power transfer (IPT) system in terms of voltage transfer function and efficiency optimization. Basic compensation is simple, but not suitable, for the achievement of variable load-independent voltage-gains without changing the design of the loosely-coupled transformer (LCT). On the other hand, higher-order compensation circuits enable greater design freedom to achieve variable load-independent voltage-gains while keeping the LCT unchanged, but it requires a variety of compensation components, especially the inductive components, which incur significant copper and core losses. This paper proposes a comprehensive design of the series/series-parallel (S/SP) IPT system. The design methodology for variable load-independent voltage-gains is studied to keep the LCT unchanged and achieve zero phase angle input over the whole load range. Design consideration includes the effect of misalignment issue on the voltage-gain and, thus, a design criteria can be derived to ensure an acceptable sensitivity to the misalignment when taking efficiency optimization. The experimental results are presented for verification.

Suggested Citation

  • Libin Yang & Ming Zong & Chunlai Li, 2021. "Voltage-Gain Design and Efficiency Optimization of Series/Series-Parallel Inductive Power Transfer System Considering Misalignment Issue," Energies, MDPI, vol. 14(11), pages 1-11, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2999-:d:559863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/2999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/2999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heqi Xu & Chunfang Wang & Dongwei Xia & Yunrui Liu, 2019. "Design of Magnetic Coupler for Wireless Power Transfer," Energies, MDPI, vol. 12(15), pages 1-12, August.
    2. Md Morshed Alam & Saad Mekhilef & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Analysis of LC-LC 2 Compensated Inductive Power Transfer for High Efficiency and Load Independent Voltage Gain," Energies, MDPI, vol. 11(11), pages 1-14, October.
    3. Yang Yang & Mohamed El Baghdadi & Yuanfeng Lan & Yassine Benomar & Joeri Van Mierlo & Omar Hegazy, 2018. "Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    4. Xuezhe Wei & Zhenshi Wang & Haifeng Dai, 2014. "A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Energies, MDPI, vol. 7(7), pages 1-26, July.
    5. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    6. Yang Liu & Bin Li & Mo Huang & Zhijian Chen & Xiuyin Zhang, 2018. "An Overview of Regulation Topologies in Resonant Wireless Power Transfer Systems for Consumer Electronics or Bio-Implants," Energies, MDPI, vol. 11(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaoteng Zhang & Jinbin Zhao & Yuebao Wu & Ling Mao & Jiongyuan Xu & Jiajun Chen, 2020. "Analysis and Implementation of Inverter Wide-Range Soft Switching in WPT System Based on Class E Inverter," Energies, MDPI, vol. 13(19), pages 1-15, October.
    2. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    3. Xin Dai & Xiaofei Li & Yanling Li & Pengqi Deng & Chunsen Tang, 2017. "A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem," Energies, MDPI, vol. 10(10), pages 1-13, October.
    4. Demetrio Iero & Riccardo Carotenuto & Massimo Merenda & Fortunato Pezzimenti & Francesco Giuseppe Della Corte, 2022. "Performance Evaluation of Silicon and GaN Switches for a Small Wireless Power Transfer System," Energies, MDPI, vol. 15(9), pages 1-18, April.
    5. Sabriansyah Rizqika Akbar & Eko Setiawan & Takuya Hirata & Ichijo Hodaka, 2023. "Optimal Wireless Power Transfer Circuit without a Capacitor on the Secondary Side," Energies, MDPI, vol. 16(6), pages 1-16, March.
    6. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    7. Xian Zhang & Xuejing Ni & Bin Wei & Songcen Wang & Qingxin Yang, 2018. "Characteristic Analysis of Electromagnetic Force in a High-Power Wireless Power Transfer System," Energies, MDPI, vol. 11(11), pages 1-13, November.
    8. Lin Chen & Jianfeng Hong & Mingjie Guan & Zaifa Lin & Wenxiang Chen, 2019. "A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer," Energies, MDPI, vol. 12(18), pages 1-19, September.
    9. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    10. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    11. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.
    12. Yang Liu & Bin Li & Mo Huang & Zhijian Chen & Xiuyin Zhang, 2018. "An Overview of Regulation Topologies in Resonant Wireless Power Transfer Systems for Consumer Electronics or Bio-Implants," Energies, MDPI, vol. 11(7), pages 1-22, July.
    13. Alicia Triviño-Cabrera & Zhengyu Lin & José A. Aguado, 2018. "Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV Wireless Charger," Energies, MDPI, vol. 11(3), pages 1-11, March.
    14. Hyeon-Seok Lee & Jae-Jung Yun, 2020. "Three-Port Converter for Integrating Energy Storage and Wireless Power Transfer Systems in Future Residential Applications," Energies, MDPI, vol. 13(1), pages 1-16, January.
    15. Wei Liu & K. T. Chau & W. H. Lam & Zhen Zhang, 2019. "Continuously Variable-Frequency Energy-Encrypted Wireless Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, April.
    16. Jacek Maciej Stankiewicz, 2023. "Evaluation of the Influence of the Load Resistance on Power and Efficiency in the Square and Circular Periodic WPT Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    17. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    18. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    19. Zhen Zhang & Ruilin Tong & Zhenyan Liang & Chunhua Liu & Jiang Wang, 2018. "Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems," Energies, MDPI, vol. 11(7), pages 1-16, July.
    20. Lin Chen & Jianfeng Hong & Mingjie Guan & Wei Wu & Wenxiang Chen, 2019. "A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2999-:d:559863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.