IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2503-d1089425.html
   My bibliography  Save this article

A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System

Author

Listed:
  • Suresh Panchanathan

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Pradeep Vishnuram

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Narayanamoorthi Rajamanickam

    (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India)

  • Mohit Bajaj

    (Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India
    Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan)

  • Vojtech Blazek

    (ENET Centre, VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

  • Lukas Prokop

    (ENET Centre, VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

  • Stanislav Misak

    (ENET Centre, VSB—Technical University of Ostrava, 708 00 Ostrava, Czech Republic)

Abstract

Over the past decade, there has been a great interest in the changeover from cars powered by gasoline to electric vehicles, both within the automotive industry and among customers. The electric vehicle–grid (V2G) technology is a noteworthy innovation that enables the battery of an electric vehicle during idling conditions or parked can function as an energy source that can store or release energy whenever required. This results in energy exchange between the grid and EV batteries. This article reviews various bidirectional converter topologies used in the V2G system. Additionally, it can reduce the cost of charging for electric utilities, thus increasing profits for EV owners. Normally electric grid and the battery of an electric vehicle can be connected through power electronic converters, especially a bidirectional converter, which allows power to flow in both directions. The majority of research work is carried out over the converters for V2G applications and concerns utilizing two conversion stages, such as the AC-DC conversion stage used for correcting the power factor and the DC-DC conversion stage for matching the terminal voltage. Furthermore, a bidirectional conversion can be made for an active power transfer between grid–vehicle (G2V) and V2G effectively. This review explores and examines several topologies of bidirectional converters which make it possible for active power flow between the grid and the vehicle and vice versa. Moreover, different types of charging and discharging systems, such as integrated/non-integrated and on/off board, etc., which have been used for electric vehicle applications, are also discussed. A comparison study is carried out based on several other factors that have been suggested. The utilization of semiconductors in power converters and non-conventional resources in charging and discharging applications are the two improving technologies for electric vehicles.

Suggested Citation

  • Suresh Panchanathan & Pradeep Vishnuram & Narayanamoorthi Rajamanickam & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2023. "A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System," Energies, MDPI, vol. 16(5), pages 1-33, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2503-:d:1089425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murugan Venkatesan & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2022. "A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications," Energies, MDPI, vol. 15(20), pages 1-29, October.
    2. Stefano Leonori & Luca Baldini & Antonello Rizzi & Fabio Massimo Frattale Mascioli, 2021. "A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells," Energies, MDPI, vol. 14(21), pages 1-29, November.
    3. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    4. Tao Peng & Peng Yang & Hanbing Dan & Hui Wang & Hua Han & Jian Yang & Hao Wang & Hui Dong & Patrick Wheeler, 2017. "A Single-Phase Bidirectional AC/DC Converter for V2G Applications," Energies, MDPI, vol. 10(7), pages 1-15, June.
    5. Bhatti, Abdul Rauf & Salam, Zainal & Aziz, Mohd Junaidi Bin Abdul & Yee, Kong Pui & Ashique, Ratil H., 2016. "Electric vehicles charging using photovoltaic: Status and technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 34-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiqi Pan & Xiaorong Yu & Zishan Guo & Tao Qian & Yang Li, 2024. "Online EVs Vehicle-to-Grid Scheduling Coordinated with Multi-Energy Microgrids: A Deep Reinforcement Learning-Based Approach," Energies, MDPI, vol. 17(11), pages 1-20, May.
    2. Moon-Jong Jang & Eunsung Oh, 2024. "Deep-Reinforcement-Learning-Based Vehicle-to-Grid Operation Strategies for Managing Solar Power Generation Forecast Errors," Sustainability, MDPI, vol. 16(9), pages 1-18, May.
    3. Richard Pravin Antony & Pongiannan Rakkiya Goundar Komarasamy & Narayanamoorthi Rajamanickam & Roobaea Alroobaea & Yasser Aboelmagd, 2024. "Optimal Rotor Design and Analysis of Energy-Efficient Brushless DC Motor-Driven Centrifugal Monoset Pump for Agriculture Applications," Energies, MDPI, vol. 17(10), pages 1-17, May.
    4. Grmay Yordanos Brhane & Eunsung Oh & Sung-Yong Son, 2024. "Virtual Energy Storage System Scheduling for Commercial Buildings with Fixed and Dynamic Energy Storage," Energies, MDPI, vol. 17(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyfettin Vadi & Ramazan Bayindir & Alperen Mustafa Colak & Eklas Hossain, 2019. "A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies," Energies, MDPI, vol. 12(19), pages 1-27, September.
    2. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    3. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.
    4. Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).
    5. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    6. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.
    7. Nunes, Pedro & Figueiredo, Raquel & Brito, Miguel C., 2016. "The use of parking lots to solar-charge electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 679-693.
    8. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    9. Mahmud, Khizir & Town, Graham E. & Morsalin, Sayidul & Hossain, M.J., 2018. "Integration of electric vehicles and management in the internet of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4179-4203.
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    12. Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
    13. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    14. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    15. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    16. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    17. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    18. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    19. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    20. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2503-:d:1089425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.