IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p315-d92374.html
   My bibliography  Save this article

An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment

Author

Listed:
  • Karam Hwang

    (Graduate School for Green Transportation, KAIST, Daejeon 34141, Korea)

  • Jaeyong Cho

    (Graduate School for Green Transportation, KAIST, Daejeon 34141, Korea)

  • Dongwook Kim

    (Graduate School for Green Transportation, KAIST, Daejeon 34141, Korea)

  • Jaehyoung Park

    (Graduate School for Green Transportation, KAIST, Daejeon 34141, Korea)

  • Jong Hwa Kwon

    (Electromagnetic Environment Research, ETRI, Daejeon 34129, Korea)

  • Sang Il Kwak

    (Electromagnetic Environment Research, ETRI, Daejeon 34129, Korea)

  • Hyun Ho Park

    (Department of Electronic Engineering, University of Suwon, Hwaseong 18123, Korea)

  • Seungyoung Ahn

    (Graduate School for Green Transportation, KAIST, Daejeon 34141, Korea)

Abstract

This paper proposes an autonomous coil alignment system (ACAS) for electric vehicles (EVs) with dynamic wireless charging (DWC) to mitigate the reduction in received power caused by lateral misalignment between the source and load coils. The key component of the ACAS is a novel sensor coil design, which can detect the load coil’s left or right position relative to the source coil by observing the change in voltage phase. This allows the lateral misalignment to be estimated through the wireless power transfer (WPT) system alone, which is a novel tracking method for vehicular applications. Once misalignment is detected, the vehicle’s lateral position is self-adjusted by an autonomous steering function. The feasibility of the overall operation of the ACAS was verified through simulation and experiments. In addition, an analysis based on experimental results was conducted, demonstrating that 26% more energy can be transferred during DWC with the ACAS, just by keeping the vehicle’s load coil aligned with the source coil.

Suggested Citation

  • Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:315-:d:92374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Po Hu & Jieshuai Ren & Wenan Li, 2016. "Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer," Energies, MDPI, vol. 9(7), pages 1-16, June.
    2. Chin-Hsing Cheng, 2016. "Implementation of a Small Type DC Microgrid Based on Fuzzy Control and Dynamic Programming," Energies, MDPI, vol. 9(10), pages 1-12, September.
    3. Yabiao Gao & Kathleen Blair Farley & Zion Tsz Ho Tse, 2015. "A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging," Energies, MDPI, vol. 8(8), pages 1-16, August.
    4. Weitong Chen & Chunhua Liu & Christopher H.T. Lee & Zhiqiang Shan, 2016. "Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    5. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    6. Young Jae Jang & Seungmin Jeong & Min Seok Lee, 2016. "Initial Energy Logistics Cost Analysis for Stationary, Quasi-Dynamic, and Dynamic Wireless Charging Public Transportation Systems," Energies, MDPI, vol. 9(7), pages 1-23, June.
    7. Chong Cao & Luting Wang & Bo Chen, 2016. "Mitigation of the Impact of High Plug-in Electric Vehicle Penetration on Residential Distribution Grid Using Smart Charging Strategies," Energies, MDPI, vol. 9(12), pages 1-19, December.
    8. Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, vol. 8(5), pages 1-19, April.
    9. Linlin Tan & Han Liu & Zhiren Liu & Jinpeng Guo & Changxin Yan & Wei Wang & Xueliang Huang, 2016. "Power Stabilization Strategy of Random Access Loads in Electric Vehicles Wireless Charging System at Traffic Lights," Energies, MDPI, vol. 9(10), pages 1-14, October.
    10. Aditya Shekhar & Venugopal Prasanth & Pavol Bauer & Mark Bolech, 2016. "Economic Viability Study of an On-Road Wireless Charging System with a Generic Driving Range Estimation Method," Energies, MDPI, vol. 9(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyit Ahmet Sis & Emre Orta, 2018. "A Cross-Shape Coil Structure for Use in Wireless Power Applications," Energies, MDPI, vol. 11(5), pages 1-14, April.
    2. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    3. Lin Chen & Jianfeng Hong & Mingjie Guan & Zaifa Lin & Wenxiang Chen, 2019. "A Converter Based on Independently Inductive Energy Injection and Free Resonance for Wireless Energy Transfer," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    5. van der Koogh, Mylène & Chappin, Emile & Heller, Reneé & Lukszo, Zofia, 2023. "Stakeholder prioritizations for electric vehicle charging across time periods," Transport Policy, Elsevier, vol. 142(C), pages 173-189.
    6. Yanting Luo & Yongmin Yang & Xisen Wen & Ming Cheng, 2018. "Enhancing the Robustness of the Wireless Power Transfer System to Uncertain Parameter Variations Using an Interval-Based Uncertain Optimization Method," Energies, MDPI, vol. 11(8), pages 1-18, August.
    7. Lin Chen & Jianfeng Hong & Mingjie Guan & Wei Wu & Wenxiang Chen, 2019. "A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer," Energies, MDPI, vol. 12(7), pages 1-18, March.
    8. Jun Heo & Sang-Won Kim & In-Kui Cho & Yong Bae Park, 2022. "Position Estimation of Multiple Receiving Coils and Power Transmission Control for WPT without Feedback," Energies, MDPI, vol. 15(22), pages 1-11, November.
    9. Dongwook Kim & Hongseok Kim & Anfeng Huang & Qiusen He & Hanyu Zhang & Seungyoung Ahn & Yuyu Zhu & Jun Fan, 2019. "Analysis and Introduction of Effective Permeability with Additional Air-Gaps on Wireless Power Transfer Coils for Electric Vehicle Based on SAE J2954 Recommended Practice," Energies, MDPI, vol. 12(24), pages 1-11, December.
    10. Zhongnan Qian & Rui Yan & Zeqian Cheng & Jiande Wu & Xiangning He, 2020. "Magnetic Positioning Technique Integrated with Near-Field Communication for Wireless EV Charging," Energies, MDPI, vol. 13(5), pages 1-22, March.
    11. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    12. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Gongjun Liu & Bo Zhang & Wenxun Xiao & Dongyuan Qiu & Yanfeng Chen & Jiu Guan, 2018. "Omnidirectional Wireless Power Transfer System Based on Rotary Transmitting Coil for Household Appliances," Energies, MDPI, vol. 11(4), pages 1-16, April.
    14. Yujun Shin & Jaehyoung Park & Haerim Kim & Seongho Woo & Bumjin Park & Sungryul Huh & Changmin Lee & Seungyoung Ahn, 2021. "Design Considerations for Adding Series Inductors to Reduce Electromagnetic Field Interference in an Over-Coupled WPT System," Energies, MDPI, vol. 14(10), pages 1-28, May.
    15. Joao Victor Pinon Pereira Dias & Masafumi Miyatake, 2018. "Increase in Robustness against Effects of Coil Misalignment on Electrical Parameters Using Magnetic Material Layer in Planar Coils of Wireless Power Transfer Transformer," Energies, MDPI, vol. 11(8), pages 1-25, July.
    16. Geetha Palani & Usha Sengamalai & Pradeep Vishnuram & Benedetto Nastasi, 2023. "Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-47, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongyu Dai & Junhua Wang & Mengjiao Long & Hong Huang, 2017. "A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-14, March.
    2. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    3. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).
    4. Yan, Xiao-Yu & Yang, Shi-Chun & He, Hong & Tang, Tie-Qiao, 2018. "An optimization model for wireless power transfer system based on circuit simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 873-880.
    5. Yuttana Kongjeen & Krischonme Bhumkittipich, 2018. "Impact of Plug-in Electric Vehicles Integrated into Power Distribution System Based on Voltage-Dependent Power Flow Analysis," Energies, MDPI, vol. 11(6), pages 1-16, June.
    6. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    7. Yuping Lin & Kai Zhang & Zuo-Jun Max Shen & Lixin Miao, 2019. "Charging Network Planning for Electric Bus Cities: A Case Study of Shenzhen, China," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    8. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    9. Dongwook Kim & Hongseok Kim & Anfeng Huang & Qiusen He & Hanyu Zhang & Seungyoung Ahn & Yuyu Zhu & Jun Fan, 2019. "Analysis and Introduction of Effective Permeability with Additional Air-Gaps on Wireless Power Transfer Coils for Electric Vehicle Based on SAE J2954 Recommended Practice," Energies, MDPI, vol. 12(24), pages 1-11, December.
    10. Chaoqiang Jiang & K. T. Chau & Chunhua Liu & Christopher H. T. Lee, 2017. "An Overview of Resonant Circuits for Wireless Power Transfer," Energies, MDPI, vol. 10(7), pages 1-20, June.
    11. Xu Liu & Lindsay Clare & Xibo Yuan & Chonglin Wang & Jianhua Liu, 2017. "A Design Method for Making an LCC Compensation Two-Coil Wireless Power Transfer System More Energy Efficient Than an SS Counterpart," Energies, MDPI, vol. 10(9), pages 1-29, September.
    12. Konstantina Anastasiadou & Nikolaos Gavanas & Magda Pitsiava-Latinopoulou & Evangelos Bekiaris, 2021. "Infrastructure Planning for Autonomous Electric Vehicles, Integrating Safety and Sustainability Aspects: A Multi-Criteria Analysis Approach," Energies, MDPI, vol. 14(17), pages 1-19, August.
    13. Chaoqiang Jiang & K.T. Chau & Chunhua Liu & Wei Han, 2017. "Wireless DC Motor Drives with Selectability and Controllability," Energies, MDPI, vol. 10(1), pages 1-15, January.
    14. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Rupak Kharel & Augustine Ikpehai & Haris Gacanin, 2017. "Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer," Energies, MDPI, vol. 10(4), pages 1-18, April.
    15. Mohamed, Ahmed A.S. & Shaier, Ahmed A. & Metwally, Hamid & Selem, Sameh I., 2020. "A comprehensive overview of inductive pad in electric vehicles stationary charging," Applied Energy, Elsevier, vol. 262(C).
    16. Yusuf A. Sha’aban & Augustine Ikpehai & Bamidele Adebisi & Khaled M. Rabie, 2017. "Bi-Directional Coordination of Plug-In Electric Vehicles with Economic Model Predictive Control," Energies, MDPI, vol. 10(10), pages 1-20, September.
    17. Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
    18. Ayman Al-Quraan & Muhannad Al-Qaisi, 2021. "Modelling, Design and Control of a Standalone Hybrid PV-Wind Micro-Grid System," Energies, MDPI, vol. 14(16), pages 1-23, August.
    19. Stefan Helber & Justine Broihan & Young Jae Jang & Peter Hecker & Thomas Feuerle, 2018. "Location Planning for Dynamic Wireless Charging Systems for Electric Airport Passenger Buses," Energies, MDPI, vol. 11(2), pages 1-16, January.
    20. Lixing Chen & Zhong Chen & Xueliang Huang & Long Jin, 2016. "A Study on Price-Based Charging Strategy for Electric Vehicles on Expressways," Energies, MDPI, vol. 9(5), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:315-:d:92374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.