IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1142-d1042116.html
   My bibliography  Save this article

Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning

Author

Listed:
  • Weijia Wen

    (State Grid Hunan Information & Telecommunication Company, Changsha 410004, China)

  • Xiao Ling

    (State Grid Hunan Information & Telecommunication Company, Changsha 410004, China)

  • Jianxin Sui

    (State Grid Hunan Information & Telecommunication Company, Changsha 410004, China)

  • Junjie Lin

    (School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China)

Abstract

For data-driven dynamic stability assessment (DSA) in modern power grids, DSA models generally have to be learned from scratch when faced with new grids, resulting in high offline computational costs. To tackle this undesirable yet often overlooked problem, this work develops a light-weight framework for DSA-oriented stability knowledge transfer from off-the-shelf test systems to practical power grids. A scale-free system feature learner is proposed to characterize system-wide features of various systems in a unified manner. Given a real-world power grid for DSA, selective stability knowledge transfer is intelligently carried out by comparing system similarities between it and the available test systems. Afterward, DSA model fine-tuning is performed to make the transferred knowledge adapt well to practical DSA contexts. Numerical test results on a realistic system, i.e., the provincial GD Power Grid in China, verify the effectiveness of the proposed framework.

Suggested Citation

  • Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1142-:d:1042116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raoult Teukam Dabou & Innocent Kamwa & Jacques Tagoudjeu & Francis Chuma Mugombozi, 2021. "Sparse Signal Reconstruction on Fixed and Adaptive Supervised Dictionary Learning for Transient Stability Assessment," Energies, MDPI, vol. 14(23), pages 1-20, November.
    2. Petar Sarajcev & Antonijo Kunac & Goran Petrovic & Marin Despalatovic, 2021. "Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble," Energies, MDPI, vol. 14(11), pages 1-26, May.
    3. Estefania Alexandra Tapia & Delia Graciela Colomé & José Luis Rueda Torres, 2022. "Recurrent Convolutional Neural Network-Based Assessment of Power System Transient Stability and Short-Term Voltage Stability," Energies, MDPI, vol. 15(23), pages 1-24, December.
    4. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Mohammad Shoaib Shahriar & Ibrahim Omar Habiballah & Huthaifa Hussein, 2018. "Optimization of Phasor Measurement Unit (PMU) Placement in Supervisory Control and Data Acquisition (SCADA)-Based Power System for Better State-Estimation Performance," Energies, MDPI, vol. 11(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciurea Iulia-Cristina, 2024. "The Impact of the EU AI Act on the UN Sustainable Development Goals for 2030 – A Text Analysis," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 2857-2870.
    2. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    3. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    4. Petar Sarajcev & Dino Lovric, 2024. "Machine Learning Classifier for Supporting Generator’s Impedance-Based Relay Protection Functions," Energies, MDPI, vol. 17(8), pages 1-16, April.
    5. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    6. Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
    7. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    8. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    9. Konrad Hawron & Bartosz Rozegnał & Maciej Sułowicz, 2024. "Transient Active Power in Two-Terminal Networks," Energies, MDPI, vol. 17(18), pages 1-17, September.
    10. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    11. Guilherme Henrique Alves & Geraldo Caixeta Guimarães & Fabricio Augusto Matheus Moura, 2023. "Battery Storage Systems Control Strategies with Intelligent Algorithms in Microgrids with Dynamic Pricing," Energies, MDPI, vol. 16(14), pages 1-30, July.
    12. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
    13. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    14. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    15. Rachid Darbali-Zamora & Jay Johnson & Adam Summers & C. Birk Jones & Clifford Hansen & Chad Showalter, 2021. "State Estimation-Based Distributed Energy Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin," Energies, MDPI, vol. 14(3), pages 1-21, February.
    16. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    17. István Táczi & Bálint Sinkovics & István Vokony & Bálint Hartmann, 2021. "The Challenges of Low Voltage Distribution System State Estimation—An Application Oriented Review," Energies, MDPI, vol. 14(17), pages 1-17, August.
    18. Akram Qashou & Sufian Yousef & Erika Sanchez-Velazquez, 2022. "Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2371-2390, October.
    19. Peerawat Payakkamas & Joop de Kraker & Marc Dijk, 2023. "Transformation of the Urban Energy–Mobility Nexus: Implications for Sustainability and Equity," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    20. Xiaofeng Feng & Hengyu Hui & Ziyang Liang & Wenchong Guo & Huakun Que & Haoyang Feng & Yu Yao & Chengjin Ye & Yi Ding, 2020. "A Novel Electricity Theft Detection Scheme Based on Text Convolutional Neural Networks," Energies, MDPI, vol. 13(21), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1142-:d:1042116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.